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Abstract—Millimeter wave (mmWave) is a viable technology
for future cellular systems. With bandwidths on the order of
a gigahertz, high-resolution analog-to-digital converters (ADCs)
become a power consumption bottleneck. One solution is to
employ very low resolution one-bit ADCs. This paper analyzes
the flat fading multiple-input multiple-output (MIMO) channel
with one-bit ADC. Bounds on the high signal-to-noise ratio (SNR)
capacity are derived for the single-input multiple-output (SIMO)
channel and the general MIMO channel. The results show how
the number of paths, number of transmit antennas, and number
of receive antennas impact the capacity at high SNR.

I. INTRODUCTION

Millimeter wave (mmWave) is a technology that can provide
high bandwidth communication links in cellular systems. As
mmWave uses larger bandwidths, the corresponding sampling
rate of the analog-to-digital converter (ADC) scales up. Un-
fortunately, high speed, high precision (e.g., 8-12 bits) ADCs
are costly and power-hungry for portable devices [1], [2]. A
possible solution is to use special ADC structures like a time-
interleaved ADC (TI-ADC) architecture where a number of
low-speed, high-precision ADCs operate in parallel. The main
challenge of the TI-ADC is the mismatch among the sub-
ADCs in gain, timing and voltage offset which can cause error
floors in receiver performance [3], [4]. An alternative solution
is to live with ultra low precision ADCs (1-3 bits), which
reduces power consumption and cost.

In this paper, we investigate the capacity of multiple-input
multiple-output (MIMO) system in which a one-bit ADC is
used for each inphase and quadrature baseband received signal.
The main advantage of this architecture is the ADCs can
be implemented with very low power consumption [5]. The
architecture also simplifies the overall complexity of the circuit
for example automatic gain control may not be required [6].
Several aspects of one-bit ADCs have been investigated in
prior work including the loss of the channel capacity [7]–
[10], channel estimation [11], [12], synchronization [13], and
MIMO channels with one-bit ADCs [14]–[17].

We study the channel capacity of the MIMO system with
one-bit ADCs in the high SNR regime. When beamforming
is at the transmitter, it is possible that mmWave systems
will operate in medium or higher SNR regimes. Combining
with results derived from the low SNR regime [15], [17], our
results provide a more complete understanding of the impact
of one bit quantization on the MIMO channel for the whole
SNR regime. Note that ADCs transform continuous inputs into

discrete outputs. In the low SNR regime, this nonlinearity is
tackled using linear approximation around zero [15]. In the
high regime, the nonlinearity always exists in our analysis.
This requires a different mathematical approach for the high
SNR case.

We first study the high SNR capacity of SIMO channel
with one-bit ADC and provide a closed form expression when
the receiver has a large number of antennas. For the MIMO
channel, we provide a bound for the high SNR capacity. Then
these results for the general MIMO channels are applied to
sparse mmWave channels. We propose a receiver structure
where analog phase shifters are placed before one-bit ADCs.
The phase shifters incur additional power consumption but
improve performance in medium and high SNR regimes.

The work [15] is most related to the contribution of our
paper. In [15], the mutual information of MIMO channel with
one-bit ADCs in the low SNR regime up to second order of
SNR is derived. It was found that under the constraint that
each antenna transmits signals independently and with equal
power, QPSK is the best signaling strategy. In addition, there
is a reduction of low SNR channel capacity by factor 2/π
(−1.96dB) due to one bit quantization. These results do not
extend to the high SNR regime.

Notation : a is a scalar, a is a vector and A is a matrix. ∠x
represents the phase of a complex number x. <(x) and =(x)
denote the real and imaginary part of x, respectively. xi:j is
the vector consisting of {xk, i ≤ k ≤ j}. tr(A), AT and
A∗ represent the trace, transpose and conjugate transpose of a
matrix A, respectively. A�B denotes the Hadamard product
of A and B.

II. SYSTEM MODEL

Consider a MIMO system with one-bit quantization, as
shown in Fig. 1. There are Nt antennas at the transmitter and
Nr antennas at the receiver. Assuming perfect synchronization
and a narrowband channel, the baseband received signal is,

y = Hx + n, (1)

where H ∈ CNr×Nt is the channel matrix, x ∈ CNt×1 is
the signal sent by the transmitter, y ∈ CNr×1 is the received
signal before quantization, and n ∼ CN (0, I) is the Gaussian
noise. In our system, there are a total of 2Nr one-bit resolution
quantizers that separately quantize the real and imaginary part
of each received signal.
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Fig. 1. System model.

We define a one-bit quantization function Q as follows.
Assume that r = {ri, 1 ≤ i ≤ Nr} and y = {yi, 1 ≤ i ≤ Nr}.
If

<(ri) = sgn(<(yi)), (2)
=(ri) = sgn(=(yi)), (3)

for 1 ≤ i ≤ Nr, then we denote that r = Q(y). Here, sgn(x)
is the sign function and ri ∈ {1 + j, 1− j,−1 + j,−1− j}.

After the one-bit quantization at the receiver, we obtain the
output r = Q(y). Consequently, the channel capacity with
one-bit quantization is

C = max
p(x):tr(E(xx∗))≤P

I(x; r) (4)

where P is the average power constraint at the transmitter.

III. HIGH SNR CAPACITY OF MIMO CHANNEL WITH
ONE-BIT QUANTIZATION

The mutual information in (4) is in the form of multiple
integrals; obtaining a closed form expression for the optimiza-
tion problem seems to be a challenge. Thus, we derive an
approximation of the channel capacity in the high SNR regime.

A. SISO Channel with One-Bit Quantization

First, we deal with the very special case when Nr = Nt = 1.
The channel coefficient now is a scalar denoted by h.

Lemma 1. The capacity of the SISO channel with one-bit
quantization is achieved by rotated QPSK signaling, i.e.,

Pr{x =
√
Pej(kπ+

π
4−∠h)} =

1

4
, for k = 0, 1, 2, 3, (5)

and is given by

CSISO(P ) = 2
(

1−H
(
Q(|h|

√
P )
))

, (6)

where H(p) = −p log2 p− (1−p) log2(1−p) and Q(·) is the
tail probability of the standard normal distribution.

Proof: Without loss of optimality, we can assume that the
transmitted signal is x = e−j∠hx̂. The outputs of the one-bit
quantizer will be <(r) = sgn(|h|<(x̂) + <(n)) and =(r) =
sgn(|h|=(x̂)+=(n)). Therefore, the channel is decoupled into
two real channels with the same channel gain. For each real
channel, it is proven in [8, Theorem 2] that binary antipodal
signaling is optimal. Therefore, the optimal input for the SISO
channel is rotated QPSK signaling.

As P → ∞, it follows that Q(|h|
√
P ) → 0 and

limP→∞ CSISO(P ) = 2 bps/Hz.

B. SIMO Channel with One-Bit Quantization

In the SIMO channel with Nr antennas at the receiver, there
are at most 22Nr possible quantization outputs. Therefore, 2Nr

is a simple upper bound for the channel capacity. This upper
bound, unfortunately, cannot be approached when Nr is larger
than one, as shown in the following proposition.

Proposition 1. The capacity of the SIMO channel with one-bit
quantization at high SNR, denoted as CSIMO(Nr), satisfies

log2(4Nr) ≤ CSIMO(Nr) ≤ log2 (4Nr + 1) . (7)

Proof: Denote the SIMO channel as h =
[h1, h2, · · · , hNr

]T . When the phase of the transmitted
symbol x is around ∠x = kπ/2 − ∠hi(k = 0, 1, 2, 3; i =
1, 2, · · · , Nr), one element of the one-bit quantization output
will change its sign. There are at most 4Nr such phases,
denoted as Φ = {φi, 1 ≤ i ≤ 4Nr}. Following the derivations
in [7] and [9], it can be shown the high SNR capacity is
achieved with transmit symbols from three categories:

1) The symbol zero;
2) The symbols with phases in Φ;
3) The symbols with phases not in Φ.
For the zero symbol, Pr(r|x = 0) = 2−2Nr for each

possible r. For the symbols with phases not in Φ, Pr(r|x) =
1(r = Q(hx)) where 1(·) is the indicator function. At last
consider the symbols with phases in Φ. If ∠x = −∠h1,
then Pr(r = [1 + j,Q(hx)T2:Nr

]T |x) = Pr(r = [1 −
j,Q(hx)T2:Nr

]T |x) = 1/2. The other conditional probabilities
can be derived similarly. Therefore, the transition probability
matrix from these three kinds of input symbols to the output
is

Pr(r|x) =

 2−2Nr · · · · · · 2−2Nr

T4Nr×4Nr 04Nr×(22Nr−4Nr)

I4Nr×4Nr 04Nr×(22Nr−4Nr)

 (8)

where T is a 4Nr×4Nr circulant matrix with the first row as
[1/2, 1/2, 0, · · · , 0].

Assume that these three kinds of symbols are transmitted
with probabilities p0, p1 and 1 − p0 − p1, respectively. The
resulting mutual information, denoted as f(p0, p1), is as shown
at the top of the next page. The channel capacity can be com-
puted by searching the optimal p0 and p1, denoted as p∗0 and
p∗1, which maximizes the mutual information f(p0, p1). It turns
out that ∂f(p0, p1)/∂p1 < 0 and thus p∗1 = 0. Therefore, there
are at most 4Nr + 1 possible input symbols in the capacity-
achieving distribution and an upper bound of the capacity is
log2(4Nr + 1). The lower bound log2(4Nr) is achieved by
setting p0 = 0 and p1 = 0, i.e., f(0, 0) = log2(4Nr).

Corollary 1. When Nr is large, the capacity of SIMO channel
with one-bit quantization at high SNR is

CSIMO(Nr) ≈ log2(4Nr + 1). (10)

Proof: When Nr is large,

f(p0, 0) ≈ −(1− p0) log2

1− p0
4Nr

− p0 log2 p0.



f(p0, p1) :=

(
−1 + p0 − p1 − p0

4Nr

4Nr

)
log2

(
1− p0 − p1

4Nr
+

p0
4Nr

+ p1

)
− 2p1 −

8Nr
2

4Nr
p0 −

4Nr − 4Nr

4Nr
p0 log2 p0 (9)
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Fig. 2. The high SNR capacity and its lower bound and upper bound.

It turns out that p∗0 = 1
4Nr+1 and f(p∗0, 0) ≈ log2(4Nr + 1).

In Fig. 2, we plot the high SNR capacity obtained by numer-
ically maximizing the mutual information function f(p0, p1).
The lower bound log2(4Nr) and upper bound log2(4Nr + 1)
are also plotted. It is shown that the high SNR capacity
converges to log2(4Nr + 1) when Nr ≥ 6.

For the special case when ∠hm = ∠hn + kπ/2, k ∈
{0, 1, 2, 3} for some m 6= n, the total number of distinguish-
able input symbols will be less than 4Nr. We usually assume
that the channel coefficients are generated from continuous dis-
tribution. Thus with probability one, ∠hm 6= ∠hn+kπ/2, k ∈
{0, 1, 2, 3} for m 6= n.

In many systems, the zero symbol is not included as
part of the constellation due to peak-to-average power ratio
(PAPR) issues. Therefore, in the high SNR regime, only 4Nr

distinguishable symbols are employed as the channel inputs
and there will be 4Nr different quantization outputs corre-
sponding to each input symbol. The resulting achievable rate
will approach to log2(4Nr) as transmission power increases.

C. MIMO Channel with One-Bit Quantization

Proposition 2. For the MIMO channel with one-bit quantiza-
tion, the high SNR capacity, denoted as CMIMO(H), satisfies,

2rank(H) ≤ CMIMO(H) ≤ 2Nr. (11)

Proof: First, since there are at most 22Nr possible quan-
tization outputs at the receiver, CMIMO(H) ≤ 2Nr.

Now we denote the rank of the channel matrix as n =
rank(H). Without loss of generality, assume that the first n
rows are linearly independent and define A as a n×Nt matrix
consisting of these n rows. Consider the quantization outputs
of the first 2n quantizer, i.e., r1:n := {ri, 1 ≤ i ≤ n}. For each
of the 22n possible values of r1:n, there is a corresponding

input symbol x = A∗(AA∗)−1y such that Q(y) = r1:n
assuming there is no noise. By transmitting these 22n signals
with equal probability, a lower bound of the channel capacity
in the high SNR regime, which is 2n, is achieved. Thus the
proposition is proved.

Corollary 2. If the channel coefficients are independently
generated from a continuous distribution, then

2 min{Nr, Nt} ≤ CMIMO(H) ≤ 2Nr. (12)

Proof: When the channel coefficients are independently
generated from a continuous distribution, then with probability
one, rank(H) = min{Nr, Nt}. Inserting this into (11), we
obtain Corollary 2.

IV. MMWAVE CHANNEL WITH ONE-BIT QUANTIZATION

Scattering tends to be lower in the mmWave band compared
with lower frequencies and thus rank(H) may be less than
min{Nr, Nt}. In this section we assume a ray-based channel
model with L paths [18], [19]. Denote α`, φr`, φt` as the
strength, the angle of arrival and the angle of departure of
the `th path, respectively. We also assume that uniform linear
arrays are deployed at the transmitter and receiver. The array
response vector at the receiver can be written as

ar(φr`) =
1√
Nr

[1, ejθ, ej2θ, ..., ej(Nr−1)θ]T (13)

where θ = 2π
λ d sin(ϕr`). Herein, λ is the wavelength and d

is the inter-element spacing. The array response vector at the
transmitter at(ϕt`) is defined similarly. Hence, the channel
matrix is,

H =

L∑
`=1

α`ar(ϕr`)a
∗
t (ϕt`). (14)

Corollary 3. For a MIMO system with channel model in (14),
2 min{L,Nr, Nt} ≤ CMIMO(H) ≤ 2Nr.

Proof: For the channel model shown in (14), rank(H) =
min{L,Nr, Nt} [20]. Combining this with Proposition 2, we
obtain Corollary 3.

In mmWave systems, the number of multipaths is lim-
ited due to the sparse scattering structure. Meanwhile, large
antenna arrays are usually deployed to obtain beamforming
gain for combatting the path loss. Hence, in the case when
L < min{Nt, Nr}, we have 2L ≤ CMIMO(H) ≤ 2Nr.
Therefore, multipath is helpful in improving the lower bound
of high SNR capacity in a scattering-limited environment.

Next, we consider such a mmWave MIMO channel with
only one path and propose a transmission strategy. If L = 1,
the channel (14) degenerates to

H = αar(ϕr)a
∗
t (ϕt). (15)
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Fig. 3. In our proposed strategy, the transmitter sends 8-PSK symbols and
Φ = {π

8
+ k π

4
, k = 0, 1, · · · , 7} when Nr = 2.

To obtain beamforming gain, matched filter beamforming is
used at the transmitter and the resulting channel is equivalent
to a SIMO channel. The transmitter sends 4Nr-PSK symbols
since the receiver can at most distinguish 4Nr received signals
in the high SNR regime. Now we propose a receiver structure
for this system. In each antenna, a phase shifter is installed
before the quantizers to rotate the received signal. The output
of the quantizer is

r = Q (br � (αar (ϕr)x+ n)) , (16)

where br = [ejψ0 , ejψ1 , ..., ejψNr−1 ]T represents the rotation
operation implemented by phase shifters.

In the proof of Proposition 1, we see that the SIMO receiver
acts as a phase detector defined by Φ. The whole range
[0, 2π] is divided into 4Nr regions {[φm, φm+1](0 ≤ m ≤
4Nr − 2) and [φ4Nr−1, φ0]} assuming 0 ≤ φ0 < φ1 <
· · · < φ4Nr−1 < 2π. A simple and heuristic design is to
let the phases of transmitted 4Nr-PSK symbols, which are
{ kπ2Nr

, 0 ≤ k ≤ 4Nr − 1}, fall into each of the 4Nr regions.
Therefore, we want Φ = { π

4Nr
+ k π

2Nr
, 0 ≤ k ≤ 4Nr − 1}.

This can be achieved by designing br such that

b� ar(ϕr) =
1√
Nr

ej
π

4Nr [1, ej
π

2Nr , ej2
π

2Nr , · · · , ej(Nr−1) π
2Nr ]T .

We plot the case when Nr = 2 in Fig. 3. The transmitter sends
8-PSK symbols. By appropriately designing br, the resulting
Φ is {π8 + k π4 , k = 0, 1, · · · , 7}. In Fig. 3, each of the 8-PSK
symbols is on the angular bisector of the lines with phases in
Φ.

V. SIMULATION RESULTS

A. SIMO Channel with One-Bit Quantization

In the SIMO channel, we obtain the capacity-achieving
input distribution using the cutting plane method [21, Sec. IV-
A]. For this method, we take a fine quantized discrete grid on
the region {x : −3

√
P ≤ <{x} ≤ 3

√
P ,−3

√
P ≤ ={x} ≤

3
√
P} as the possible inputs and optimize their probabilities.

In Fig. 4, we shown a simple case when h = [ejπ/8, e−jπ/8]T .
It is interesting to find that the optimal input constellation
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Fig. 4. The optimal input distribution of the SIMO channel when h =
[ejπ/8, e−jπ/8]T . The transmission power P = 10 and the achieved rate is
about 2.52 bps/Hz.

contains the rotated 8-PSK symbols and the symbol zero. For
other channels, the optimal constellation may not be regular.

B. MIMO Channel with One-Bit Quantization

In Fig. 5, we plot the achievable rate when Nt = Nr = 2.
The channel coefficients are generated from CN (0, 1) distribu-
tion independently and the results are obtained by averaging
over 100 different channel realizations. The input alphabet,
which contains 22Nr = 16 input symbols, are constructed
by the method used in the proof of Proposition 2. The input
symbols are obtained by solving

x =
√
P

H−1y

‖H−1y‖
, (17)

where y = [±1± j, ±1± j]T . These symbols are transmitted
with equal probabilities 1/16 or with probabilities optimized
by the Blahut-Arimoto algorithm [22]. We can see that these
two curves are very close in Fig. 5. The channel capacity
without quantization is computed using the usual waterfilling
approach. When the SNR is less than 5dB, the gap between the
curves with and without quantization is small. When the SNR
is larger than 5dB, the achievable rate with one-bit quantization
approaches the upper bound 4 bps/Hz. In Fig. 5, we also plot
the low SNR capacity approximation given by [15, Eq. (18)].
We see that when SNR is less than −5 dB, the curve of low
SNR approximation is close to the other two curves of one-
bit quantization. In the high SNR regime, however, it will be
negative and far away from the other curves.

C. MmWave Channel with One-Bit Quantization

In this part, we evaluate the performance of our proposed
transmission strategy in a 2 × 2 channel with single path.
We assume that the angles of departure ϕt and angles of
arrival ϕr are uniformly distributed. The complex path gains
α is Gaussian distributed. The inter-element spacing of the
receiver antenna array is set to one quarter of the wavelength.
The transmitter employs 8-PSK signaling. If there is no phase
shifter, the received complex signals are directly quantized by
the one-bit ADCs. If the receiver has one phase shifter on each
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Fig. 6. The achievable rate with the proposed transmission strategy in a
mmWave 2× 2 channel with only one path.

receiver antenna, the phase shifters will rotate the phase of the
input signals such that Φ = {π8 +k π4 , k = 0, 1, · · · , 7}. In Fig.
6, we compare the performances of the above two receiver
structures. The proposed receiver structure can achieve higher
rate in medium and high SNR regimes. Note that the phase
shifters are potentially as power efficient as one-bit ADCs [23].
Therefore, our proposed receiver structure achieves higher
performance with little increase of power consumption. The
gains may be smaller for larger numbers of receive antennas.

VI. CONCLUSION

In this paper, we studied the capacity of point-to-point
MIMO channel with one-bit quantization at the receiver. We
found that the high SNR capacity of SIMO channel increase
linearly with log2(Nr). For the MIMO channel, the high SNR
capacity is lower bounded by the rank of the channel. We also
considered the mmWave MIMO channel with limited scatter-
ing. We showed that multipath is helpful in improving the
lower bound of the high SNR capacity. Finally, we proposed
a power efficient receiver structure where the phase shifters
and one-bit ADCs are used to achieve higher data rate.
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