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Abstract—Extending recent findings on the two-user MISO
broadcast channel (BC) with imperfect and delayed channel
state information at the transmitter (CSIT), the work here
explores the performance of the two user MIMO BC, in the
presence of feedback with evolving quality and timeliness. Under
standard assumptions, and in the presence of M antennas at
the transmitter and N antennas per receiver, the work derives
the DoF region, which is optimal for a large range of current
and delayed CSIT quality. This region concisely captures the
effect of having predicted, current and delayed-CSIT, as well
as concisely captures the effect of the quality of CSIT offered
at any time, about any channel realization. In addition to the
progress towards describing the limits of using such imperfect
and delayed feedback in MIMO settings, the work offers different
insights that include the fact that DoF optimality, in the presence
of an increased number of receiving antennas, can be achieved
with reduced quality feedback.

I. INTRODUCTION

A. MIMO BC model

For the setting of the multiple-input multiple-output broad-
cast channel (MIMO BC), we consider the case where an M
antenna transmitter, sends information to two receivers with
N receive antennas each. In this setting, the received signals
at the two receivers take the form

y
(1)
t = H

(1)
t xt + z

(1)
t (1a)

y
(2)
t = H

(2)
t xt + z

(2)
t (1b)

where H
(1)
t ∈ CN×M ,H(2)

t ∈ CN×M respectively repre-
sent the first and second receiver channels at time t, where
z

(1)
t , z

(2)
t represent unit power AWGN noise at the two re-

ceivers, and where xt ∈ CM×1 is the input signal with power
constraint E[||xt||2] ≤ P .

B. Degrees-of-freedom as a function of feedback quality

In the presence of perfect channel state information at
the transmitter (CSIT), the degrees-of-freedom (DoF) perfor-
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mance1 for the case of the MIMO BC, is given by (cf. [1])

{d1 ≤ min{M,N}, d2 ≤ min{M,N}, (2)
d1 + d2 ≤ min{M, 2N}}. (3)

In the absence of any CSIT though, this performance reduces,
from that in (2),(3), to the DoF region

{d1 + d2 ≤ min{M,N}} (4)

corresponding to a symmetric DoF corner point (d1 = d2 =
min{M,N}/2) (cf. [2], [3]).

This gap necessitates the use of imperfect and delayed
feedback, as this was studied in works like [4]–[18] for
specific instances. The work here makes progress towards
describing the limits of this use of imperfect and delayed
feedback.

C. Predicted, current and delayed CSIT
As in [19], we consider communication of an infinite

duration n.
For the case of the BC, we consider a random fading process

{H(1)
t ,H

(2)
t }nt=1, and a feedback process that provides CSIT

estimates {Ĥ
(1)

t,t′ , Ĥ
(2)

t,t′}nt,t′=1 (of channel H(1)
t ,H

(2)
t ) at any

time t′ = [1, · · · , n]. For the channel H(1)
t ,H

(2)
t at a specific

time t, the set of all available estimates {Ĥ
(1)

t,t′ , Ĥ
(2)

t,t′}t′ , can

be naturally split in the predicted estimates {Ĥ
(1)

t,t′ , Ĥ
(2)

t,t′}t′<t
that are offered before the channel materializes, the current
estimate Ĥ

(1)

t,t , Ĥ
(2)

t,t at time t, and the delayed estimates

{Ĥ
(1)

t,t′ , Ĥ
(2)

t,t′}t′>t that may allow for retrospective compen-
sation for the lack of perfect quality feedback. Naturally the
fundamental measure of feedback quality is given by the
precision of estimates at any time about any channel, i.e., is
given by

{(H(1)
t − Ĥ

(1)

t,t′), (H
(2)
t − Ĥ

(2)

t,t′)}nt,t′=1. (5)

These estimation-error sets of course fluctuate depending on
the instance of the problem, and as expected, the overall
optimal performance is defined by the statistics of the above
estimation errors. We here only assume that these errors
have zero-mean circularly-symmetric complex Gaussian en-
tries, that are spatially uncorrelated, and that at any time t,
the current estimation error is independent of the channel
estimates up to that time.

1We remind the reader that in the high-SNR setting of interest, for an
achievable rate pair (R1, R2) for the first and second receiver respectively, the
corresponding DoF pair (d1, d2) is given by di = limP→∞

Ri
logP

, i = 1, 2
and the corresponding DoF region is then the set of all achievable DoF pairs.



D. Notation, conventions and assumptions

We will generally follow the notations and assumptions
in [19], and will adapt them to the MIMO setting. We will
use the notation

α
(i)
t ,− lim

P→∞

E[||H(i)
t − Ĥ

(i)

t,t ||2F ]

logP
, (6)

β
(i)
t ,− lim

P→∞

E[||H(i)
t − Ĥ

(i)

t,t+η||2F ]

logP
(7)

where α
(i)
t is used to describe the current quality exponent

for the CSIT for channel H(i)
t of receiver i, i = 1, 2, while

β
(i)
t is used to describe the delayed quality exponents for each

user. In the above, η can be as large as necessary, but it must
be finite, as we here consider delayed CSIT that arrives after
a finite delay from the channel it describes. The above used
|| • ||F to denote the Frobenius norm of a matrix.

As argued in [19], the results in [20], [21] easily show that
without loss of generality, in the DoF setting of interest, we
can restrict our attention to the range

0 ≤ α(i)
t ≤ β

(i)
t ≤ 1. (8)

Here having α
(1)
t = α

(2)
t = 1, corresponds to the highest

quality CSIT with perfect timing (full CSIT) for the specific
channel at time t, while having β(i)

t = 1 corresponds to having
perfect delayed CSIT for the same channel, i.e., it corresponds
to the case where at some point t′ > t, the transmitter has
perfect estimates of the channel that materialized at time t.

Furthermore we will use the notation

ᾱ(i) , lim
n→∞

1

n

n∑
t=1

α
(i)
t , β̄(i) , lim

n→∞

1

n

n∑
t=1

β
(i)
t , i = 1, 2

(9)
to denote the average of the quality exponents. As in [19] we
will adopt the mild assumption that any sufficiently long subse-
quence {α(1)

t }τ+T
t=τ (resp. {α(2)

t }τ+T
t=τ , {β

(1)
t }τ+T

t=τ , {β
(2)
t }τ+T

t=τ )
has an average that converges to the long term average ᾱ(1)

(resp. ᾱ(2), β̄(1), β̄(2)), for any τ and for some finite T that
can be chosen to be sufficiently large to allow for the above
convergence.

Implicit in our definition of the quality exponents, is
our assumption that E[||H(1)

t − Ĥ
(1)

t,t′ ||2F ] ≤ E[||H(1)
t −

Ĥ
(1)

t,t′′ ||2F ], E[||H(2)
t − Ĥ

(2)

t,t′ ||2F ] ≤ E[||H(2)
t − Ĥ

(2)

t,t′′ ||2F ], for
any t′ > t′′, which simply reflects the fact that - if necessary -
one can revert back to past estimates of possibly better quality
statistics. This assumption can be removed - after a small
change in the definition of the quality exponents - without
an effect to the main result.

Throughout this paper, (•)T and (•)H will denote the trans-
pose and conjugate transpose of a matrix respectively, while
diag(•) will denote a diagonal matrix, || • || will denote the
Euclidean norm, and | • | will denote the magnitude of a
scalar. o(•) comes from the standard Landau notation, where
f(x) = o(g(x)) implies limx→∞ f(x)/g(x) = 0. We also use
.
= to denote exponential equality, i.e., we write f(P )

.
= PB

to denote lim
P→∞

log f(P )

logP
= B. Similarly

.
≥ and

.
≤ will

denote exponential inequalities. Logarithms are of base 2.
(•)+ = max{•, 0}.

Furthermore we adhere to the common convention (see
[9], [22]–[25]) of assuming perfect and global knowledge
of channel state information at the receivers (perfect global
CSIR), where the receivers know all channel states and all
estimates. We will also adopt the common convention (see
[24]–[27]) of assuming that the current estimation error is
statistically independent of current and past estimates. A
discussion on this can be found in [19] which argues that
this assumption fits well with many channel models, spanning
from the fast fading channel (i.i.d. in time), to the corre-
lated channel model as this is considered in [26], to the
quasi-static block fading model where the CSIT estimates
are successively refined while the channel remains static.
Additionally we consider the entries of each estimation error
matrix H

(i)
t − Ĥ

(i)

t,t′ to be i.i.d. Gaussian 2. Finally we will
refer to a CSIT process with ‘sufficiently good delayed CSIT’,
to be a process for which min{β̄(1), β̄(2)} ≥ min{1,M −
min{M,N}, N(1+ᾱ(1)+ᾱ(2))

min{M,2N}+N , N(1+ᾱ(2))
min{M,2N}}.

E. Existing results directly relating to the current work

The work here builds on the ideas of [22] on using delayed
CSIT to retrospectively compensate for interference due to
lack of current CSIT, on the ideas in [26] and later in [24],
[25] on exploiting perfect delayed and imperfect current CSIT,
as well as the work in [28], [29] which - in the context
of imperfect and delayed CSIT - introduced encoding and
decoding with a phase-Markov structure that will be used
later on. The work here is also motivated by the work in
[8] which considered the use of delayed feedback in different
MIMO BC settings, as well as by recent progress in [9] that
considered MIMO BC and MIMO IC settings that enjoyed
perfect delayed feedback as well as imperfect current feedback
of a quality that remained unchanged throughout the commu-

nication process (α(1) = − limP→∞
E[||H(1)

t −Ĥ
(1)
t,t ||

2
F ]

logP , α(2) =

− limP→∞
E[||H(2)

t −Ĥ
(2)
t,t ||

2
F ]

logP , ∀t). The work is finally moti-
vated by the recent approach in [19] that employed sequences
of evolving quality exponents to address the fundamental
problem of deriving the performance limits given a general
CSIT process of a certain quality.

II. DOF REGION OF THE MIMO BC
In the following we present the DoF region for any CSIT

process with sufficiently good delayed CSIT. After the main
theorem, and different corollaries, we will present a brief
sketch of the encoding part of the transceiver, that allows for
the inner bound. The corresponding outer bound is found in
the journal version [31] of this current work (see also our
work in [30] for the outer bound in the presence of statistical
symmetric of CSIT quality across the two users).

We recall that we consider communication of large duration
n, a possibly correlated channel process {H(1)

t ,H
(2)
t }nt=1,

2We here make it clear that we are simply referring to the MN entries in
each such specific matrix H

(i)
t −Ĥ

(i)
t,t′ , and that we certainly do not suggest

that the error entries are i.i.d. in time or across users.
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Fig. 1. Optimal DoF regions, for two different cases,
with M > N and min{β̄(1), β̄(2)} ≥ min{1,M −
min{M,N}, N(1+ᾱ(1)+ᾱ(2))

min{M,2N}+N ,
N(1+ᾱ(2))
min{M,2N}}. The corner points

take the following values: A∗ =
(
N,

(M−N)N(1+ᾱ(2))
M

)
,

B∗ =
(
(M−N)ᾱ(2), N

)
, C∗ =

(
MN
M+N

(1+ ᾱ(1)− N
M
ᾱ(2)), MN

M+N
(1+

ᾱ(2)− N
M
ᾱ(1))

)
, D∗ =

(
N, (M−N)ᾱ(1)

)
, E∗ =

(
M−Nᾱ(2), Nᾱ(2)

)
,

F ∗ =
(
Nᾱ(1), M − Nᾱ(1)

)
. Line L0 corresponds to the bound in (12),

Line L1 corresponds to the bound in (14), while line L2 corresponds to the
bound in (13).

and a feedback process of quality defined by the statistics
of {(H(1)

t − Ĥ
(1)

t,t′), (H
(2)
t − Ĥ

(2)

t,t′)}nt=1,t′=1. We henceforth,
without loss of generality, label the users so that ᾱ(2) ≤ ᾱ(1).

Theorem 1: The optimal DoF region of the
two-user (M × (N,N)) MIMO BC with a
CSIT process {Ĥ

(1)

t,t′ , Ĥ
(2)

t,t′}nt=1,t′=1 of quality

{(H(1)
t −Ĥ

(1)

t,t′), (H
(2)
t −Ĥ

(2)

t,t′)}nt=1,t′=1 that has sufficiently
good delayed CSIT, is given by

d1 ≤ min{M,N} (10)
d2 ≤ min{M,N} (11)
d1 + d2 ≤ min{M, 2N} (12)

d1

min{M,N}
+

d2

min{M, 2N}

≤ 1 +
min{M, 2N} −min{M,N}

min{M, 2N}
ᾱ(1) (13)

d1

min{M, 2N}
+

d2

min{M,N}

≤ 1 +
min{M, 2N} −min{M,N}

min{M, 2N}
ᾱ(2). (14)

A. Imperfect current CSIT can be as useful as perfect current
CSIT

The above results allow for direct conclusions on the
amount of CSIT that is necessary to achieve the optimal DoF
performance associated to perfect and immediately available
CSIT. We recall that there is no need for CSIT when M ≤ N .
The proofs for the following corollary, and of the corollary
immediately after that, are direct from the above theorems.

Corollary 1a: A CSIT process that offers

ᾱ(1) + ᾱ(2) ≥ min{M, 2N}/N

can achieve the same optimal sum-DoF as the process that has
perfect and immediately available CSIT (ᾱ(1) = ᾱ(2) = 1).

The above suggests that increasing the number of receive
antennas, can have the added benefit - in addition to an
increased optimal DoF - of allowing for a reduction in the
required feedback quality ᾱ(1), ᾱ(2), without a DoF penalty.

Along the same lines, the following describes the amount
of delayed CSIT that suffices to achieve the DoF associated
to perfect delayed CSIT.

Corollary 1b: Any CSIT process that offers
min{β̄(1), β̄(2)} ≥ min{1,M −
min{M,N}, N(1+ᾱ(1)+ᾱ(2))

min{M,2N}+N , N(1+ᾱ(2))
min{M,2N}}

can achieve the same DoF region as a CSIT process that
offers perfect delayed CSIT (β̄(1) = β̄(2) = 1).

III. PHASE-MARKOV TRANSCEIVER FOR IMPERFECT AND
DELAYED FEEDBACK

We proceed to extend the MISO BC scheme in [19], to the
current MIMO setting. We here focus on sketching the general
structure of the encoding scheme, without presenting all the
details. The journal version of this work in [31] provides the
details of the process of calibrating the scheme to achieve
the different DoF corner points of Theorem 1, as well as the
details of decoding.

Before proceeding with the schemes, we again note that we
only need to consider the case where N < M ≤ 2N simply
because the optimal DoF can be achieved without any CSIT
whenever M ≤ N , while having M > 2N can be shown to be
equivalent, in terms of DoF, with the case of having M = 2N .

The challenge here will be to design a scheme of large du-
ration n, that utilizes the CSIT process {Ĥ

(1)

t,t′ , Ĥ
(2)

t,t′}nt=1,t′=1.
As in [19], the causal scheme will not require knowledge of
future quality exponents, nor of predicted CSIT estimates of
future channels. We remind the reader that the users are labeled
so that ᾱ(2) ≤ ᾱ(1).

For notational convenience, we will use

Ĥ
(1)

t , Ĥ
(1)

t,t , Ĥ
(2)

t , Ĥ
(2)

t,t (15)

Ȟ
(1)

t , Ĥ
(1)

t,t+η, Ȟ
(2)

t , Ĥ
(2)

t,t+η (16)

to denote the current and delayed estimates of H
(1)
t ,H

(2)
t ,

with the corresponding estimation errors being

H̃
(1)

t ,H
(1)
t − Ĥ

(1)

t , H̃
(2)

t ,H
(2)
t − Ĥ

(2)

t (17)

Ḧ
(1)

t ,H
(1)
t − Ȟ

(1)

t , Ḧ
(2)

t ,H
(2)
t − Ȟ

(2)

t . (18)

We will also use the notation

P
(e)
t ,E|et|2 (19)

to denote the power of a symbol et corresponding to time-
slot t, and we will use r(e)

t to denote the prelog factor of the
number of bits r(e)

t logP − o(logP ) carried by symbol et at
time t.



A. Sketch of the encoding process

As in [19], we subdivide the overall time duration n, into
S phases, each of duration of T , such that each phase s (s =
1, 2, · · · , S) takes place over the time slots t ∈ Bs

Bs = {Bs,`,(s−1)2T + `}T`=1, s = 1, · · · , S. (20)

Naturally in the gap of what we define here to be consecutive
phases, another message is sent, using the same exact scheme.
Going back to the aforementioned assumption, T is sufficiently
large so that

1

T

∑
t∈Bs

α
(i)
t → ᾱ(i),

1

T

∑
t∈Bs

β
(i)
t → β̄(i), s = 1, · · · , S (21)

i = 1, 2. For notational convenience we will also assume
that T > η (cf. (6)), although this assumption can be readily
removed, as this was argued in [19]. Finally with n being
infinite, S is also infinite.

Adhering to a phase-Markov structure which - in the context
of imperfect and delayed CSIT, was first introduced in [28],
[29] - the scheme will quantize the accumulated interference of
a certain phase s, broadcast it to both receivers over phase (s+
1), while at the same time it will send extra information to both
receivers in phase s, which will help recover the interference
accumulated in phase (s− 1).

We first describe the encoding for all phases except the last
phase which will be addressed separately due to its different
structure.

1) Phase s, for s = 1, 2, · · · , S − 1: In each phase,
the scheme combines zero forcing and superposition coding,
power and rate allocation, and interference quantizing and
broadcasting. We proceed to describe these steps.

a) Zero forcing and superposition coding: At time t ∈
Bs (of phase s), the transmitter sends

xt = W tct + U tat + U
′

ta
′

t + V tbt + V
′

tb
′

t (22)

where at ∈ C(M−N)×1,a
′

t ∈ CN×1 are the vectors of
symbols meant for receiver 1, bt ∈ C(M−N)×1, b

′

t ∈ CN×1

are those meant for receiver 2, where ct ∈ CM×M is a
common symbol vector, where U t = (Ĥ

(2)

t )⊥ ∈ CM×(M−N)

is a unit-norm matrix that is orthogonal to Ĥ
(2)

t , where V t =

(Ĥ
(1)

t )⊥ ∈ CM×(M−N) is orthogonal to Ĥ
(1)

t , and where
W t ∈ CM×M ,U

′

t ∈ CM×N ,V
′

t ∈ CM×N are predetermined
randomly-generated matrices known by all nodes.

b) Power and rate allocation: The powers and (normal-
ized) rates during phase s time-slot t, are

P
(c)
t

.
= P, P

(a)
t

.
= P δ

(2)
t P

(b)
t

.
= P δ

(1)
t

P
(a′)
t

.
= P δ

(2)
t −α

(2)
t P

(b′)
t

.
= P δ

(1)
t −α

(1)
t

r
(a)
t = (M −N)δ

(2)
t r

(b)
t = (M −N)δ

(1)
t

r
(a′)
t = N(δ

(2)
t − α

(2)
t )+ r

(b′)
t = N(δ

(1)
t − α

(1)
t )+

(23)

where {δ(1)
t , δ

(2)
t }t∈Bs are designed such that

β
(i)
t ≥ δ

(i)
t i = 1, 2, t ∈ Bs (24)

1

T

∑
t∈Bs

δ
(1)
t =

1

T

∑
t∈Bs

δ
(2)
t = δ̄ (25)

1

T

∑
t∈Bs

(δ
(i)
t − α

(i)
t )+ = (δ̄ − ᾱ(i))+ i = 1, 2 (26)

for some δ̄ that will be bounded by

δ̄ ≤ min{1, β̄(1), β̄(2),
N(1 + ᾱ(1) + ᾱ(2))

M +N
,
N(1 + ᾱ(2))

M
}

(27)

and which will be set to specific values later on, depending
on the DoF corner point we wish to achieve.

The exact solutions for {δ(1)
t , δ

(2)
t }t∈Bs satisfied

(24),(25),(26) are shown in [19], and the rates of the
common symbols {cBs,t}Tt=1 are designed to jointly carry

T (N − (M −N)δ̄) logP − o(logP ) (28)

bits.
To put the above allocation in perspective, we show the

received signals, and describe under each term the order of
the summand’s average power. These signals take the form

y
(1)
t = H

(1)
t W tct︸ ︷︷ ︸
P

+H
(1)
t U tat︸ ︷︷ ︸
P δ

(2)
t

+H
(1)
t U

′

ta
′

t︸ ︷︷ ︸
P δ

(2)
t −α

(2)
t

+ z
(1)
t︸︷︷︸
P 0

+

ι̌
(1)
t︷ ︸︸ ︷

Ȟ
(1)

t (V tbt + V
′

tb
′

t)︸ ︷︷ ︸
P δ

(1)
t −α

(1)
t

+

ι
(1)
t −ι̌

(1)
t︷ ︸︸ ︷

Ḧ
(1)

t (V tbt + V
′

tb
′

t)︸ ︷︷ ︸
P δ

(1)
t −β

(1)
t ≤P 0

(29)

y
(2)
t = H

(2)
t W tct︸ ︷︷ ︸
P

+H
(2)
t V tbt︸ ︷︷ ︸
P δ

(1)
t

+H
(2)
t V

′

tb
′

t︸ ︷︷ ︸
P δ

(1)
t −α

(1)
t

+ z
(2)
t︸︷︷︸
P 0

+

ι̌
(2)
t︷ ︸︸ ︷

Ȟ
(2)

t (U tat + U
′

ta
′

t)︸ ︷︷ ︸
P δ

(2)
t −α

(2)
t

+

ι
(2)
t −ι̌

(2)
t︷ ︸︸ ︷

Ḧ
(2)

t (U tat + U
′

ta
′

t)︸ ︷︷ ︸
P δ

(2)
t −β

(2)
t ≤P 0

(30)

where

ι
(1)
t ,H

(1)
t (V tbt+V

′

tb
′

t), ι
(2)
t ,H

(2)
t (U tat+U

′

ta
′

t) (31)

denote the interference at receiver 1 and receiver 2 respec-
tively, and where

ι̌
(1)
t , Ȟ

(1)

t (V tbt+V
′

tb
′

t), ι̌
(2)
t , Ȟ

(2)

t (U tat+U
′

ta
′

t) (32)

denote the transmitter’s delayed estimates of ι(1)
t , ι

(2)
t .

c) Quantizing and broadcasting the accumulated inter-
ference: Before the beginning of phase (s+1), the transmitter
reconstructs ι̌(1)

t , ι̌
(2)
t for all t ∈ Bs, using its knowledge of

delayed CSIT, and quantizes these into

¯̌ι
(1)
t = ι̌

(1)
t − ι̃

(1)
t , ¯̌ι

(2)
t = ι̌

(2)
t − ι̃

(2)
t (33)

using a total of N(δ
(1)
t − α

(1)
t )+ logP and N(δ

(2)
t −

α
(2)
t )+ logP quantization bits respectively. This allows for



bounded power of quantization noise ι̃
(1)
t , ι̃

(2)
t , i.e, al-

lows for E|ι̃(2)
t |2

.
= E|ι̃(1)

t |2
.
= 1, since E|ι̌(2)

t |2
.
=

P δ
(2)
t −α

(2)
t , E|ι̌(1)

t |2
.
= P δ

(1)
t −α

(1)
t (cf. [32]). Then the trans-

mitter evenly splits the∑
t∈Bs

(
N(δ

(1)
t − α

(1)
t )+ +N(δ

(2)
t − α

(2)
t )+

)
logP

= TN
(

(δ̄ − ᾱ(1))+ + (δ̄ − ᾱ(2))+
)

logP (34)

(cf. (26)) quantization bits into the common symbols
{ct}t∈Bs+1

that will be transmitted during the next phase
(phase s + 1), and which will convey these quantization bits
together with other new information bits for the receivers.
These {ct}t∈Bs+1

will help the receivers cancel interference,
as well as will serve as extra observations that will allow for
decoding of all private information.

Finally, for the last phase S, the main target will be to
recover the information on the interference accumulated in
phase (S − 1). For large S, this last phase can focus entirely
on transmitting common symbols.

d) Calibrating the scheme to achieve DoF corner points:
The above provided a general description of the structure of
the encoding. To achieve the different DoF corner points of
Theorem 1, there is a process of calibrating the scheme to
achieve these specific DoF corner points. This is not presented
here, and - as stated before - is presented in detail in the journal
version of this work in [31], which also presents the details
of the decoding process.

IV. CONCLUSIONS

The work, extending on recent work on the MISO BC, con-
sidered the symmetric MIMO BC, and made progress towards
establishing and meeting the tradeoff between performance,
and feedback timeliness and quality. Considering a general
CSIT process, the work provided simple DoF expressions that
reveal the role of the number of antennas in establishing the
feedback quality associated to a certain DoF performance.
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