Representation of human actions as a sequence of human body movements or action attributes enables the development of models for human activity recognition and summarization. We present an extension of the low-rank representation (LRR) model, termed the clustering-aware structure-constrained low-rank representation (CS-LRR) model, for unsupervised learning of human action attributes from video data. Our model is based on the union-of-subspaces (UoS) framework, and integrates spectral clustering into the LRR optimization problem for better subspace clustering results. We lay out an efficient linear alternating direction method to solve the CS-LRR optimization problem. We also introduce a hierarchical subspace clustering approach, termed hierarchical CS-LRR, to learn the attributes without the need for a priori specification of their number. By visualizing and labeling these action attributes, the hierarchical model can be used to semantically summarize long video sequences of human actions at multiple resolutions. A human action or activity can also be uniquely represented as a sequence of transitions from one action attribute to another, which can then be used for human action recognition.