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Abstract—We analyze a one-bit wireless transceiver
whose architecture is simple enough that its power versus
performance profile can be modeled analytically. We then
utilize multiple such transceivers in a communication
system operating at millimeter-wave carrier frequencies.
Various aspects of the system are analyzed, including the
optimum achievable throughput for a given amount of
total consumed power. An analogy is drawn between the
“transceiver cell” proposed herein and a “computational
cell” commonly used in neural networks that allows us to
apply neural-network type algorithms to aid in difficult
tasks such as channel estimation for a large number of
transceivers.

I. INTRODUCTION

Future generations of wireless systems, such as the
fifth-generation (5G) systems currently being developed,
are looking at carrier frequencies and bandwidths sig-
nificantly higher than existing services. The FCC has
recently proposed the use of spectrum at 28 GHz and
39 GHz for mobile services [1], with the hope that
bandwidths in excess of 2 GHz and corresponding high
data rates can be supported.

As carrier frequencies rise into the millimeter-wave
and sub-millimeter-wave bands, and bandwidths rise into
the GHz range, however, the design of low-cost, low-
power, highly linear radio-frequency (RF) circuits be-
comes increasingly challenging. Standard CMOS circuits
struggle at carrier frequencies in the tens of GHz to
obtain good noise performance and low leakage with
small process nodes. High-speed linear amplifiers, mix-
ers, analog-to-digital converters (ADC’s), and digital-to-
analog converters (DAC’s) in the transmitter and receiver
chains become power hungry and expensive. For exam-
ple, a 12-bit 4 Gsample/second ADC (Texas Instruments
ADC12J4000) consumes two Watts (2 W) [2].

At the same time, link-budget calculations suggest
that multiple transceiver chains and streaming or beam-
forming techniques are generally needed to commu-
nicate reliably in the millimeter-wave band. Indeed,
so-called “massive MIMO” (multiple-input multiple-
output), where dozens of transceiver chains are used,
is being considered as a possible method to overcome
fading, shadowing, and pathloss [3]. Although a large
number of antennas and transceiver chains are conceiv-

able for a base station, for a portable cell phone battery
with 10 W-hr of stored energy, a single ADC could,
by iteself, drain the battery in several hours of use. We
cannot rely on radical advances in battery technology
over the next five years, and for a phone that is expected
to maintain power for 24 hours, we therefore have an
allowable budget of only 0.5 W on average of consump-
tion throughout the day for the entire phone, including
display, computer, transceiver, and interfaces. The radio
should have at most half of this budget, therefore giving
an average power consumption of 250 mW or less for
the combined transmitter and receiver, including sleep
and idle modes.

A. Concerns on power consumption lead to simple
transceivers

The wireless community is acknowledging that the
combined forces of high cost and power per RF
chain, multiplied by the requirement of having many
chains, conspire to make high-performance, high-
bandwidth, portable wireless devices impractical unless
the transceiver chains are critically re-examined. A sim-
ple trade-off analysis suggests that relaxing some of the
linearity requirements in a communication system can
yield a beneficial outcome in a wireless system operating
in the millimeter and sub-millimeter-wave bands.

The trade-off comes from exchanging bandwidth and
the number of RF chains for linearity and effective
number of bits. As carrier frequencies rise into the tens
of GHz and above, bandwidth becomes more plentiful
while linearity becomes more precious. At a carrier
frequency of 100 GHz, having a bandwidth of even
5% of the carrier frequency is 5 GHz, which is an
enormous playground to create a wireless system oper-
ating at very high data rates. To get 2.5 Gbits/second
data rate, a single-carrier system operating at near 5
Gsymbols/second, with 0.5 bits/symbol is all that is
needed. A single-carrier system transmitting less than
one bit per symbol could potentially be achieved with
transceivers that operate on the basic principle of π
phase shifts. Such systems require minimal linearity and
effective number of bits.



If the power consumption of each one-bit-per-symbol
(1-bit) circuit is small enough, high spectral and power
efficiency in bits/(second-Hz-Watt) or bits/(Hz-Joule)
can be attained by employing multiple 1-bit circuits.
This measure of efficiency, which we utilize, is similar
to a traditional measure, bits/Joule, [4] that is often
cited as a measure of energy efficiency. However, the
bits/Joule measure typically assumes that bandwidth is
not constrained (is unlimited) in attaining maximum
efficiency. Although we utilize a large bandwidth, it is
not allowed to grow without limit, and we find that
the unit bits/(Hz-Joule) allows us to easily compare the
energy efficiency of different systems with constrained
bandwidth.

Since power consumption of an ADC scales approx-
imately linearly in sampling rate and exponentially in
the number of bits per sample [5], we can readily
compensate in cost and power for high sampling rates by
lowering the resolution of the quantizer. Specifically, a
1-bit quantizer, being itself just a simple comparator, can
be made to consume only 100’s of microWatts (µW) of
power, even at GHz sampling rates [6]. Utilizing many
1-bit chains can yield large bits/(Hz-Joule).

B. Background in simple transceivers

Some early efforts in analyzing the effects of a non-
linearity in wireline communication systems include [7]
and [8], where information-theoretic arguments are used
to derive the capacity of a system where a 1-bit ADC
at the receiver is used. Early work in the analysis of a
wireless channel includes [9]–[11], where the capacity
for 1-bit ADC’s and MIMO systems is examined, with
known information about the channel.

Early works on the analysis of wireless multi-carrier
systems such as orthogonal frequency-division multi-
plexing (OFDM) with quantization effects are [12],
[13]. More recently, OFDM and single-carrier systems
with 1-bit receiver ADC’s in a massive MIMO system
are studied in [14] and [15]. In [16], the information-
theoretic capacity is derived for a receiver with an
oversampling 1-bit ADC in a wireline communication
system. A MIMO system with 1-bit ADC in each receive
antenna is considered in [17] and [18]. In [19], the
capacity of a flat-fading MIMO channel with 1-bit ADCs
is analyzed. In [20] the capacity of a MIMO system with
1-bit ADCs at the receiver is analyzed and the effect of
the number of paths, the number of transmit antennas and
the number of receive antennas is analyzed. Other similar
studies include [21]–[26], where various assumptions are
made about the downlink and uplink and which end of
the link has a 1-bit ADC, and how much is known about
the channel. In [27], a multi-antenna base station system
with single-antenna 1-bit receivers is analyzed.

While many of the above efforts consider low-
resolution quantization effects at the transmitter or re-
ceiver, a few consider low resolution quantizers at both.
For example, [28], designs a linear minimum-mean-
squared-error precoder to mitigate quantization distor-
tion. In [29], channel estimation with 1-bit ADC’s and
DAC’s is considered.

The wireless transceiver we analyze is simple enough
that the end-to-end power-performance profile can
be modeled. We examine the use of multiple such
transceivers in a communication system, and examine
various performance aspects of the system. Of particular
interest are optimizing the energy efficiency, as measured
in bits/(Hz-Joule), and attaining high throughputs using
simple transmitter and receiver processing.

C. One-bit transceiver cell

The sections of this paper, each of which deals with a
separate aspect of the transceiver analysis, are summa-
rized as follows.

1) Transceiver cell hardware architecture: We ana-
lyze a low-power one-bit BPSK transceiver cell whose
design is simple enough that a power-performance pro-
file may be modeled. The architecture of the transceiver
is generic enough that its model is representative of a
class of similar transceivers that can be designed for a
variety of carrier frequencies and bandwidths. We show
how the SNR at the receiver varies with the total power
consumption at both the transmitter and the receiver.

2) Achievable rate: When there are M transmit-
ter/receiver pairs, we show that the channel capacity
(in bits/channel-use) increases linearly with M under
certain conditions; however, it cannot generally achieve
M bits/channel-use for M ≥ 2. In a block-fading
channel in which the channel is constant for Tb samples
and unknown, and changes independently every interval
Tb, the capacity is 0 for Tb = 1, no matter how
many transceivers there are. The capacity of a single
transmitter/receiver pair as a function of Tb and SNR is
provided.

3) Machine learning and channel estimation: Classi-
cal channel estimation algorithms like the MMSE esti-
mator have complexity that is generally prohibitive, es-
pecially for large number of transceivers. By drawing an
analogy between a “computational cell” commonly used
in neural networks and the proposed transceiver cell,
we may apply sub-optimal but efficient neural-network-
based algorithms for communication-related functions
such as channel estimation. For example, the soft-support
vector machine (SVM) algorithms used in machine-
learning can be applied to estimate the channel with low
complexity, even for a large number of transceivers.

4) Beamforming: The 1-bit quantized nature of
the transceiver cell does not permit traditional high-



resolution processing techniques such as singular value
decomposition based beamforming. We provide a frame-
work for beamforming and show that, under certain
circumstances, the sign of the channel is used to form
the optimal beamforming vector at transmitter, and bit-
error probabilities are used as beamforming weights at
the receiver.

5) Energy efficiency: We calculate bits/(Hz-Joule)
as a performance metric that allows us to profile the
achievable rate (in bits/channel-use) versus system power
consumption (in Watts). This guides the selection of the
operational power of the system that achieves optimum
energy efficiency.

II. TRANSCEIVER CELL HARDWARE ARCHITECTURE

Many components and circuits in a phone such as
the power amplifier (PA), low-noise amplifier (LNA),
voltage-controlled oscillators and phase-locked loops
(VCO’s and PLL’s), and mixers, when operating at
frequencies above 20 GHz and bandwidths above 2 GHz
show markedly higher power consumption than their
microwave narrowband counterparts. Multi-bit ADC’s
and DAC’s, in particular, consume power on the order
of Watts to digitize at GHz sample rates. Rather than
selectively removing components of existing transceivers
in an effort to save power, we propose to strip a radio
transceiver into a basic cell that has a minimum number
of subsystems. This allows us to map the consumed
power at the transmitter and receiver to the performance
of the overall system. The transceiver architecture is
generic enough that its model is representative of similar
one-bit transceivers that can be designed for a variety of
carrier frequencies and bandwidths.

A quick way to get very low power consumption is
to employ a simple comparator at the receiver to act
as a 1-bit ADC, and equivalent switch as a 1-bit DAC
at the transmitter. Recent research [6] shows that very
high-speed 1-bit comparators can be made to operate at
100’s of microWatts (µW) at sample rates extending to
the GHz range. We therefore concentrate our modeling
efforts on the radio-frequency portion of the hardware,
which generally consumes considerably more.

To convey 1 bit per symbol, π phase modulation
(BPSK) or on/off keying (OOK) structures can be used.
In this paper, we focus on a BPSK transceiver.

A. BPSK Transmitter

A simple BPSK transmitter contains a 1-bit DAC
with low quality-factor filter, a passive mixer for up-
conversion to RF, and an RF power amplifier operating as
shown in Fig. 1. The 1-bit nonlinear architecture permits
the transmitter to operate in saturation for maximum
efficiency. The mixer and DAC can operate in the sub-
milliWatt range, as long as the PA has enough gain
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Fig. 1. Simple transmitter for BPSK showing 1-bit DAC, mixer, and
PA
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Fig. 2. Simple receiver requires a local oscillator phase reference
driving a phase-detecting mixer

to amplify the signal for transmission; then the PA
dominates the power consumption of the transmitter. At
millimeter-wave frequencies, regardless of architecture
(either saturated or harmonic tuned) a high efficiency
power amplifier design is limited by device parasitics
and the current state of the art yields maximum power-
added efficiency (PAE) of between 35–45% [30]. We
consider a PAE of ηt = 45%, and therefore

Ptx(Wtx) = ηtWtx, (1)

where Ptx is the over-the-air transmitter power ranging
from sub-mW to 10 mW, and Wtx is the consumed
transmitter power. This is a first-order representation of
Ptx as a function of Wtx, and represents the effect of
transmitter performance (as measured by output power)
as a function of transmitter consumed power.

B. BPSK Receiver

At the receiver, a PLL/VCO drives a mixer for down-
conversion, and we assume, for simplicity, that there is
no LNA, and therefore accept a correspondingly high
noise figure. A block-diagram design of a simple BPSK
receiver is shown in Fig. 2.

We consider the design of the PLL/VCO and fre-
quency converter with the objective of minimizing con-
sumed power. Frequency conversion mixers often in-
clude multiple nonlinear devices in a balanced configura-
tions to provide port-to-port isolation, increase linearity,
and suppress spurious products. However, local oscillator
(LO) power is linearly proportional to the number of
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Fig. 3. A single FET nonlinear transconductance mixer was designed
for low power in the Qorvo 0.15µm GaAs process. The FET is biased
for low LO and RF power levels. The LO and RF combine at the gate,
and IF is taken from a lumped-element low-pass filter on the drain.

nonlinear devices in the mixer, so the simple receiver
uses a single nonlinear device in an effort to keep power
consumption as low as possible. As a result, LO and
RF feed-through to the IF port may be large and there
will be spurious products. We accept these by-products
of low power consumption.

The noise figure (decrease in SNR from the input to
the output of a two-port network) of the entire receiver
is then dominated by the conversion loss of the mixer,
which decreases as the LO power increases. From [31],
conversion loss (or NF) of a FET mixer is

NF(Wrx) =
(2πfRFCgsV

2
p )2

8RηrWrxI2
DSS

, (2)

where fRF is the RF frequency, R is the characteristic
impedance of the mixer (usually 50 Ω), Cgs is the gate
source capacitance, Vp is the pinch-off voltage, IDSS is
the drain current for zero bias, ηr is the efficiency of the
LO.

We design a simple FET mixer operating at 39 GHz
in a Qorvo 0.15µm GaAs foundry process, whose
schematic is shown in Fig. 3. The corresponding parame-
ters are fRF = 39 GHz, IDSS = 10 mA, Cgs = 10−13F,
Vp = 1 V. We further consider the LO efficiency to be
ηr = 25%. Then, (2) can be simplified as

NF(Wrx) =
α

Wrx
, (3)

where α = 60mW. This equation, to first order, charac-
terizes the performance (as measured by noise figure) of
the receiver as a function of its consumed power.

III. SYSTEM MODEL

Using the transceiver cell, we can model a typical
wireless channel and the corresponding signal-to-noise
ratio (SNR) at the receiver as a function of the total
consumed power at the transmitter and receiver.

A distance of 40 meters between transmitter and
receiver is reasonable for systems operating in the
millimeter-wave band. The pathloss at 39 GHz carrier

frequency [32] is given by the formula 20 log10

(
4π
λ

)
+

20 log10(40) ≈ 93 dB, where λ is the wavelength at 39
GHz. We are targeting 2 GHz of bandwidth, and there-
fore the noise power is N0 + 10 log10(2 × 109) ≈ −81
dBm where N0 = −174 dBm/Hz is the thermal noise
level. With Gtx = 5 dB of antenna gain at the transmitter
and Grx = 5 dB at the receiver, we have a receive signal
strength of −73 dBm when the transmitter power is at its
maximum of 10 dBm. Our signal-to-noise-ratio (SNR)
at a receiver situated 40 m from the transmitter is then

ρ(Wtx,Wrx) = Ptx(Wtx)− 93 + 81 + 5 + 5−NF(Wrx)

= Ptx(Wtx)−NF(Wrx)− 2,
(4)

where Ptx(Wtx) and NF(Wrx) are shown in (1) and (3).
The total power consumption of a transceiver cell

is Wrx + Wtx. Clearly, increasing either Wrx or Wtx

improves ρ(Wtx,Wrx) by increasing Ptx and decreasing
NF.

A. Received signal model

We use a standard multi-transceiver set-up where
there are M transmitters and N receivers. The baseband
representation of the transmitted signal is the M × 1
vector x. BPSK modulation is used at each transmitter
and the baseband transmitted signals are represented as
x ∈ {±1}M .

The baseband-equivalent of the channel matrix, de-
noted H , represents the wireless environment between
the transmitter and receiver. We assume a relatively flat
channel since the millimeter-wave frequencies we are
employing tend to have limited delay-spread [32].

The received signal is represented by the baseband
N × 1 vector y. Depending on the nature of the
transceiver cell, the entries of this vector either represent
downconverter quantized I or Q phase information. In
this paper, we assume only I branch is used at the
receiver. The channel, which is traditionally modeled
as complex-valued because of the possible quadrature
(Q) component of received signal, can instead simply be
modeled as real-valued since the imaginary part is not
demodulated. The received signal is then

y = sign(

√
ρ

M
Hx + v), (5)

where x ∈ {±1}M , y ∈ {±1}N , H is a N ×M matrix,
v is a N × 1 vector, ρ is the expected received SNR at
each receive antenna. The additive noise v ∼ N (0, I) is
independent of H and x. The function sign(·) provides
the sign of the input as its output. The channel matrix
H is scaled so that

E[(Hx)H(Hx)] = ME[vHv] = MN (6)

and one example of H is Rayleigh independent fading
channel where elements of H are i.i.d. GaussianN (0, 1).



B. Transition probability matrix vs channel matrix:

Because of the single-bit nature of these transceivers,
(5) describes a discrete memoryless channel (DMC) with
transition probability

p (y|x) =

N∏
k=1

Q

(
−yk[

√
ρ

M
Hx]k

)
(7)

where yk is the kth element of y, [·] is the kth element
of the enclosed vector, and Q(·) is the well-known Q-
function.

The channel of a DMC with 2M possible inputs and
2N possible outputs can be described by a 2M × 2N

transition probability matrix (TPM), whose elements are
p (y|x) with x ∈ {±1}M and y ∈ {±1}N , determined
by ρ and H using (7). Therefore, the TPM is fully
determined by H (for known ρ). On the other hand, when
the 2M × 2N TPM is given, H is uniquely determined.
Therefore, the TPM and channel matrix H are in a one-
to-one mapping.

One example with M = N = 1 is actually a binary
symmetric channel (BSC) with crossover probability

pb = Q (−√ρh) , (8)

where h is the channel scalar.

C. Comments on modulation and synchronization

Because of the constrained nature of these
transceivers, we are confined to single-carrier modulation
methods. In general, we assume timing and frequency
synchronization are available at the receiver. Fortunately,
the burdens of synchronization, while not trivial, do not
scale with the number of transceivers.

IV. ACHIEVABLE RATE

When there are M transmitter/receiver pairs, we show
that uniform input is optimal when receiver knows the
channel and the channel capacity (in bits/channel-use)
increases linearly with M ; however, it cannot generally
achieve M bits/channel-use for M ≥ 2 even at infinite
SNR. A Rayleigh independent fading channel is consid-
ered, where elements of H are i.i.d. N (0, 1), and ρ is
known.

A. Receiver knows the channel

We assume the channel is known perfectly to the
receiver. Then, the capacity of the system is

CR = max
px(·),x∈{±1}M

I(x;y, H) (9)

where px(·) is the input distribution independent of H ,
and I(·; ·) is the mutual information notation. We show
that the uniform input distribution on {±1}M achieves
capacity.
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Fig. 4. Capacity (13) versus SNR with M = N = 1, . . . , 5, showing
saturation at approximately 10-15 dB.

For any input distribution px(x), the achievable rate
is

R(px(x)) = I(x;y, H),x ∼ px(x) (10)

We have
R(px′(x)) = R(px(x)) (11)

where px′(x) is the distribution of x′ with

x′ = Ux, U = diag(u),u ∈ {±1}M , (12)

diag(u) is a diagonal matrix with u as diagonal elements,
since HUH and H have the same distribution. Since the
mutual information is a concave function of the input
distribution px(x),

R(px(x)) =
1

2M

∑
x′=Ux,U=diag(u),u∈{±1}M

R(px′(x))

≤ R

 1

2M

∑
x′=Ux,U=diag(u),u∈{±1}M

px′(x)


= R(px̄(x)),

where x̄ is uniformly distributed on {±1}M . This shows
that uniform input achieves capacity.

With a uniformly distributed input, we obtain

CR = EH

Ex

 ∑
y∈{±1}N

p(y|x) log2

p(y|x)

Ex[p(y|x)]

 .
(13)

The simulated results of (13) with M = N as a function
of SNR and M = N = 1, . . . 5 are shown in Fig. 4. The
results show that the capacity saturates at approximately
10− 15 dB.

B. High SNR

We analyze the performance limit of the system by
computing the capacity of the system at high SNR, and



where the TPM is known to the receiver. As SNR→∞,
the TPM comprises 1’s and 0’s since y is determined
from x for a given H . The transition probability becomes

p (y|x) = 1 (y = sign(Hx)) , (14)

where 1(·) outputs 1 when the input is true and outputs
0 otherwise.

For a single transmitter/receiver pair, we have pb = 0
or pb = 1. Then, the capacity of the BSC is Cb = 1
bit/channel-use.

However, in the multi-cell case, the capacity is not
necessarily M bits/channel-use, because the receiver
may not be able to distinguish all the 2M transmitted
symbols. For example, there may exist different vectors
x1,x2 ∈ {±1}M that satisfy

sign(Hx1) = sign(Hx2) (15)

and therefore cannot be distinguished at the receiver for
any SNR.

To show this, consider the signal set at the receiver
defined as

A(H) = {y|y = sign(Hx),x ∈ {±1}M}. (16)

Clearly, we have

|A(H)| ≤ min{2M , 2N}. (17)

Therefore, the capacity is upper bounded by

CR ≤ EH [|A(H)|] = CT ≤ min(M,N), (18)

where CT is the capacity of the system when the
transmitter and receiver know the channel, and CR is the
capacity when only receiver knows the channel. Equality
is achieved with one transmitter/receiver pair. At high
SNR,

I(x;y, H) = I(x;H)︸ ︷︷ ︸
=0

+I(x;y|H)

= H(y|H)−H(y|x, H)︸ ︷︷ ︸
=0

= H(y|H), (19)

where H(·) is the entropy.
We use the uniform distribution on x in (9) and (19)

to obtain

CR = −EH

∑
y

Ex[1(sign(Hx) = y)] log2 Ex[1(sign(Hx) = y)]

(a)
= −2NEH [Ex [1(sign(Hx) = 1) log2 Ex[1(sign(Hx) = 1)]]]

(b)
= −2NEH [1(sign(H1) = 1) log2 Ex[1(sign(Hx) = 1)]]

=M − EH

(
log2

∑
x

[1(sign(Hx) = 1|sign(H1) = 1)]

)
(20)

(c)

≥ M − log2

(∑
x

EH [1(sign(Hx) = 1|sign(H1) = 1)]

)
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Fig. 5. Capacity CT (18), CR (20), and lower bound (21) for M = N ,
along with trivial upper bound M . The capacity increases linearly with
M .

(d)
= M − log2

(
M∑
k=0

(
M

k

)(
1− 1

π
arccos

(
M − 2k

M

))N
)
,

(21)

where 1 is a vector of all 1’s, (a) and (b) are achieved
by only considering y = 1, and x = 1 based on the
symmetry of x and H , (c) uses Jensen’s inequality, and
(d) is derived according to a similar calculation made in
the context of geometry [33]. From (20),

CR < M (22)

for M ≥ 2.
For any non-uniform distribution on x, we have

I(x;y, H) ≤ H(x) < M. (23)

Therefore, when M > 2, we also have

CT < M. (24)

Fig. 5 shows the capacity in high SNR and its bounds,
including CT (18), CR (20), the lower bound (21), and
the upper bound M for M = N . It is readily seen from
(21) that the capacity increases linearly with M = N .

C. Receiver does not know the channel

For finite SNR ρ, and H unknown to both the trans-
mitter and the receiver, we consider a block fading model
in which the channel is constant for some discrete time
block Tb, and changes every interval Tb independently.
Within one block of Tb symbols, (5) yields

Yb = sign(

√
ρ

M
HXb + Vb), (25)

where Xb ∈ {±1}M×Tb is the transmitted signal matrix,
Yb ∈ {±1}N×Tb is the received signal matrix, Vb is the
N × Tb matrix of additive Gaussian noise independent
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of H and Xb, and sign(·) provides the sign of the input
as the output.

The capacity in bits per channel-use becomes

C =
1

Tb
max

pXb
(·),Xb∈{±1}M×Tb

I(Xb;Yb), (26)

where the transition probability between Xb and Yb is
unknown, but its distribution can be derived through the
distribution of H .

Since H is random, when Tb = 1, then Yb ∈ {±1}N
is uniformly-distributed, independently of Xb. Therefore
C = 0.

For Tb > 1, we consider a single transmitter/receiver
in which the model (25) can be simplified as

yb = sign(
√
ρhxb + vb), (27)

where xb,yb ∈ {±1}Tb , h ∼ N (0, 1), vb ∼ N (0, I), h
and vb are independent. The kth element of xb and yb
are denoted as xb(k) and yb(k), respectively.

This model is equivalent to a BSC with crossover
probability pb shown in (8), and where pb is changed
independently every time block Tb when h changes. We
have

C =
1

Tb
(H(yb)−H(yb|xb))

= 1− 1

Tb
Exb

(
Eyb|xb

(− log2 P(yb|xb))
)

= 1 +
1

Tb
Eyb|xb=1 (log2 P(yb|xb = 1))

= 1 +
1

Tb

Tb∑
k=0

(
Tb
k

)(
Eh
[
pkb (1− pb)Tb−k

]
log2

(
Eh
[
pkb (1− pb)Tb−k

]) )
. (28)

Fig.6 shows the results for a variety of block lengths Tb
and SNR’s.

For multiple transceiver chains, the optimal input
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Fig. 7. Mean-square error (MSE) of soft-SVM (Algorithm 1) and
MMSE estimator (29). All 2M possible signals are transmitted for
training. Because of computational difficulties, we only show M ≤ 5
for the MMSE estimator.

distribution is more complicated, but a lower bound of
the capacity can be obtained by using uniform input. We
omit this analysis here.

V. MACHINE LEARNING AND CHANNEL ESTIMATION

In this section, we draw some analogies between the
proposed “transceiver cell” and the classical “compu-
tational cell” used in modeling neural networks. As a
result, simple machine learning algorithms can brought
to bear on aspects of communication, such as channel
estimation.

As an example, we consider N = 1 and an arbi-
trary M . Assume Tt training symbols xt(1), . . . ,xt(Tt)
known to the receiver are transmitted for learning the
channel and the corresponding received symbols at the
receiver are yt(1), . . . , yt(Tt). The transmitted training
signals are collected as a matrix Xt ∈ {±1}M×Tt and
the received signals are collected as a vector yt ∈
{±1}1×Tt .

The classical MMSE estimator, defined as the condi-
tional mean h:

ĥMMSE = E[h|Xt,yt] (29)

minimizes mean-square error (MSE) eMMSE =
Eh‖ĥMMSE − h‖2/M . Unfortunately, it does not have
a closed-form solution and the complexity increases
dramatically as M increases.

However, the estimation problem can be cast into a
question often solved in the context of neural networks:
what are the “weights” whose linear combination feed
a threshold function? A neural network is made up of
neural cells connected with each other, and each neural
cell is a computation unit with output as a nonlinear
operation of the input. The most common nonlinear



operation is taking the sign of the linear combination
of the inputs, modeled as

y = sign(wTx), (30)

where y is the output, x is the input vector, and w are
the “weights” of the cell. These weights play the role of
the unknown channel in our communication system.

The support vector machine (SVM) algorithm [34] is
widely used in classification problems to estimate w that
solves yt(k) = sign(wTxt(k)) for all k = 1, . . . , Tt.
In particular, a version called soft-SVM handles the
classification problem in the presence of noise. The
estimate, denoted ĥSVM , is displayed as Algorithm 1.
The MSE of the channel estimation using the soft-SVM
algorithm is eSVM = Eh‖ĥSVM − h‖2/M . The soft-
SVM algorithm is simple to implement, even for a large
number of transceiver cells.

Algorithm 1 Soft-SVM Algorithm
Input: A training set (xt(k), yt(k))(1 ≤ k ≤ Tt), Nt

#xt(k) the kth transmitted training vector
#yt(k) the received signal from the kth training
#Tt the number of trainings
#Nt maximum iteration number
θ(1) = 0 · xt(1)
ĥ = θ(1)

for t = 1, · · · , Nt do
ĥ = ĥ + 1

t θ
(t);

if (yt(k)(ĥ)Txt(k) > 0) for all 1 ≤ k ≤ Tt, then
break;

else
Choose m uniformly random from set A,
where A = {k : yt(k)(ĥ)Txt(k) ≤ 0};
θ(t+1) = θ(t) + yt(m)xt(m);

end if
end for
ĥSV M =

√
Mĥ/‖ĥ‖;

Output: ĥSV M

We show the performance of soft-SVM algorithm and
MMSE estimator in Fig. 7 as a function of M for various
SNR’s. The soft-SVM algorithm compares favorably to
the MMSE through a wide range of SNR’s and number
of transmitter cells. In this figure, all 2M possible distinct
training signals are used, and we set Nt = 300. The
difficulty of computing the MMSE estimator for M
greater than 5 makes a complete comparison impossible
for all M . We can see that eSVM decreases quickly as
the number of antennas M increases.

VI. BEAMFORMING

We provide a framework for beamforming and show
that, under certain circumstances, the sign of the channel
is used to form the optimal beamforming vector at
transmitter. The optimum beamformer at the receiver is
formed from knowledge of the bit error probabilities.

A. Beamforming at the transmitter
We use N = 1 as an example to show beamforming

at the transmitter. The classical beamforming solution is
compared with the 1-bit transceiver version.

1) Classical high-resolution system: In a classical
high-resolution linear system, beamforming is

x = ws, (31)

where w is the transmitted beamforming vector with
‖w‖ =

√
M and s is the transmitted symbol. The result

is
wT,` = argmax

‖u‖=
√
M

|hTu|, (32)

where one solution is

wT,` =

√
Mh

‖h‖
. (33)

2) Single-bit transceiver: In contrast to the high-
resolution system, the received signal can only be y ∈
{±1}, and therefore the transmitted symbol is effectively
s ∈ {±1}. We can still use (31) as the beamforming
framework with s ∈ {±1}, and with w ∈ {±1}M . The
best beamforming vector w will maximize the SNR at
the receiver, whence

wT,q = argmax
u∈{±1}M

|hTu|, (34)

where one solution is

wT,q = sign(h), (35)

and the corresponding transmitted signal is

x = wT,qs (36)

with s ∈ {±1}.
This conclusion does not readily generalize to multiple

transceivers because the structure shown in (36) can
only transmit two distinct symbols (corresponding to one
bit). A generalized beamforming framework is required
when it is desired to transmit more than one bit using a
multiplicity of transceivers.

B. Beamforming at the receiver
We use a single transmitter to exemplify beamforming

at the receiver. The model is

y =
√
ρhx+ v, (37)

where y is the received signal, the channel is a M × 1
vector h, and v is the additive Gaussian noise.

1) Classical high-resolution system: In this case,
maximal-ratio combining (MRC) is applied at the re-
ceiver, and

wR,l =
h

√
ρhTh

(38)

x̂ = argmin
x∈X

|wT
R,ly − x|2 (39)

where X is the alphabet of the transmitted symbols, wR,l

is the linear combining beamforming vector, x̂ is the
estimate of x.



2) Single-bit transceiver: In contrast, the maximum-
likelihood detector is

x̂ = argmax
x∈{±1}

N∑
k=1

log P(yk|x), (40)

where yk is the kth element of y. We obtain

x̂ = sign

(
N∑
k=1

log
P(yk|x = 1)

P(yk|x = −1)

)

= sign(

N∑
k=1

yk log
qk
pk

)

, sign(wT
R,qy), (41)

where pk = Q(
√
ρhk) is the bit-error probability of the

kth receiver, qk = 1− pk, and wR,q is the beamforming
vector defined as

wR,q = [log
q1

p1
, log

q2

p2
, · · · , log

qN
pN

]T . (42)

Equation (42) shows the beamforming weights at the
receiver as a function of the bit-error probabilities.

For multiple transceivers where more than 2 transmit-
ted symbols are possible,

x̂ = argmax
x∈X

N∑
k=1

log P(yk|x), (43)

where X is the set of possible transmitted symbols. Un-
fortunately, we cannot readily get a simple beamforming
expression such as (41).

VII. ENERGY EFFICIENCY

As shown in (4), increasing the consumed power at
the transceiver increases the SNR ρ in (5). This increases
the channel capacity. In this section, we introduce energy
efficiency as a performance metric of the system, which
can be used to find the optimum operational power of the
transceivers in a system setting. The basic premise is that
increasing the consumed power increases the capacity,
but consuming too much power per bit results in low
efficiency.

We express the capacity of the system in bits/(second-
Hz), bits/symbol, or bits/(channel-use) equally, where
each channel-use corresponds to a new symbol. Then,
the energy efficiency with unit bits/(Hz-Joule) is defined
as

E =
C

MWtx +NWrx
, (44)

where C is the capacity in bits/(channel-use) and Wtx

and Wrx are the transmitter and receiver consumed
powers per cell.

The corresponding achievable rate in bits/second be-
comes

R = E ·B · (MWtx +NWrx), (45)
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Fig. 8. Energy efficiency E (solid lines, left y-axis, equation (44))
versus total power consumed by all transmitters and receivers, and
corresponding rate R in Gbits/second (right y-axis, color-matched
dashed lines, equation (45)) for M = N = 1, · · · , 5.

where E is the energy efficiency, and B is the system
bandwidth.

For maximum energy efficiency, we wish to operate
the system in the SNR region where a significant fraction
of the maximum throughput has been attained. The
shapes of the curves in Fig. 4 start saturating at 10-15
dB, suggesting that this SNR represents the upper end
of our target range.

We use (4), (13), (44), and (45), together to obtain
Fig. 8, which displays achievable rate in bits/(Hz-Joule)
(solid line, left y-axis) or bits/(second) (dash line, right
y-axis) versus total power consumed by all transceivers
N(Wtx + Wrx) for M = N = 1, . . . , 5. For each
value of Wrx + Wtx, the optimum pair (Wtx,Wrx) is
chosen to maximize the bits/(Hz-Joule). The simulation
results suggest that the preferred operating point of total
consumed power is N(Wtx+Wrx) ∈ [15, 20] dBm, since
the curves show highest energy efficiency.

For example, if we have M = N = 5, the operating
total power will be about W = 19 dBm (less than
100 mW) to get the maximum energy efficiency E =
19.4 bits/(Hz-Joule), with corresponding rate R = 3.1
Gbits/s. This power consumption meets the requirements
presented in the Introduction for a portable handheld
wireless device.

VIII. CONCLUSION

The single-bit transceivers we have modeled herein are
simple enough to allow an end-to-end system analysis of
per-bit energy efficiency as a function of total power
consumption. We believe that the model is generic
enough that it applies to similar single-bit transceivers



that can be designed for a variety of carrier frequencies
and bandwidths. By drawing connections between the
transceiver cells and computational cells used in neural
network models, we have also shown how machine
learning algorithms can be used to simplify algorithmic
aspects of the communication system.

We think it is an interesting challenge to drive the
power consumption (and cost) of a transceiver cell as
low as possible, and make up for their limited individual
performance and throughput by having large quantities
of them operating simultaneously. We believe that this
is an advantageous trade-off that is yet to be explored.
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