
Poisson Cluster Process: Bridging the Gap Between
PPP and 3GPP HetNet Models

Chiranjib Saha, Mehrnaz Afshang, and Harpreet S. Dhillon

Abstract—The growing complexity of heterogeneous cellular
networks (HetNets) has necessitated the need to consider variety
of user and base station (BS) configurations for realistic perfor-
mance evaluation and system design. This is directly reflected
in the HetNet simulation models considered by standardization
bodies, such as the third generation partnership project (3GPP).
Complementary to these simulation models, stochastic geometry-
based approach modeling the user and BS locations as inde-
pendent and homogeneous Poisson point processes (PPPs) has
gained prominence in the past few years. Despite its success in
revealing useful insights, this PPP-based model is not rich enough
to capture all the spatial configurations that appear in real-
world HetNet deployments (on which 3GPP simulation models
are based). In this paper, we bridge the gap between the 3GPP
simulation models and the popular PPP-based analytical model
by developing a new unified HetNet model in which a fraction of
users and some BS tiers are modeled as Poisson cluster processes
(PCPs). This model captures both non-uniformity and coupling
in the BS and user locations. For this setup, we derive exact
expression for downlink coverage probability under maximum
signal-to-interference ratio (SIR) cell association model. As inter-
mediate results, we define and evaluate sum-product functionals

for PPP and PCP. Special instances of the proposed model are
shown to closely resemble different configurations considered in
3GPP HetNet models. Our results concretely demonstrate that
the performance trends are highly sensitive to the assumptions
made on the user and SBS configurations.

Index Terms—Heterogeneous cellular network, Poisson point
process, Poisson cluster process, 3GPP.

I. INTRODUCTION

In order to handle exponential growth of mobile data traf-
fic, macrocellular networks of the yesteryears have gradually
evolved into more denser heterogeneous cellular networks
in which several types of low power small cells coexist
with macrocells. While macro BSs (MBSs) were deployed
fairly uniformly to provide a ubiquitous coverage blanket, the
small cell BSs (SBSs) are deployed somewhat organically by
operators to complement coverage and capacity of the cellular
networks at user hotspots, or by subscribers or operators
to patch coverage dead-zones. This naturally couples the
locations of the SBSs with the users, as a result of which we
now need to consider plethora of deployment scenarios in the
system design phase as opposed to only a few in the macro-
only networks of the past. As discussed in detail in Section II,
this is also reflected in the 3GPP simulation models which now
have to consider several different configurations of user and
SBS locations in the system-level simulations. For instance,
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in addition to the uniform user locations, 3GPP simulation
models also consider clustered configurations in which the user
and SBS locations are coupled.

The inherent irregularity in the SBS locations also motivated
a complementary analytical approach based on modeling the
user and BS locations by point processes. This allows the
use of powerful tools from stochastic geometry to facilitate
tractable analysis of key network performance metrics, such
as coverage and rate. However, as discussed in Section II in
detail, the existing analytical model (first proposed in [1],
[2]) models the user and BS locations using independent
homogeneous PPPs in order to maintain tractability. Although
this PPP-based HetNet model has yielded significant insights
into the network behavior, it is not rich enough to emulate
all user and SBS configurations that appear in the real-world
deployments (on which 3GPP simulation models are based).

In our recent works, we have explored some specific in-
stances of the 3GPP simulation models and argued that PCP
can potentially bridge the gap between these instances of the
3GPP models and the PPP-based baseline analytical HetNet
model by incorporating the clustering effect of points which
naturally appears in the locations of users (due to hotspot
formation) and SBSs (due to deployment at the user hotspots)
[3]–[7]. We will discuss the instances studied in these works
in the next Section. In this paper, we first provide a brief
overview of the spatial configurations of the BSs and users
that are considered in the 3GPP simulation models of HetNets.
We then develop a new unified PCP-based HetNet model,
which accurately captures all these configurations as its special
instances. Further details are provided next.

Contributions and Outcomes. We propose a general and
flexible analytical framework for K-tier HetNet where (i) the
users are either distributed as homogeneous PPP or a PCP, (ii)
the BS tiers can be either PPP or PCP coupled to the user
point process. All SBS and user configurations considered by
3GPP can be interpreted as special instances of this general
model. For this model, we derive the downlink coverage under
the max-SIR cell association. As a part of this analysis, we
first introduce a family of sum-product functionals for PPP and
PCP. Explicit expressions for these functions are then derived
(for both PPP and PCP). We then show that the coverage
probability for this setup can be expressed as a summation
of these sum-product functionals. Finally, we specialize the
coverage probability expressions for a family of PCP, known
as Neyman Scott processes. In numerical result section, we
further specialize the general multi-tier setup to different
configurations considered in 3GPP simulation models. Our
results concretely demonstrate that the performance trends are
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Fig. 1: User configurations in 3GPP HetNet model: (a) “uniform”
users within a macro cell, and (b) “clustered” users within a macro
cell.

highly sensitive to the assumptions made on the user and SBS
configurations, which further highlights the importance of the
proposed all-inclusive HetNet model.

II. HETNET MODELS

In this section, we summarize different classes of spatial
models for HetNets that are used by industry (specifically
3GPP) and academia. We begin by summarizing the models
used for system-level simulations by 3GPP. For modeling
macrocells, 3GPP simulation scenarios rely on either a single
macro cell setup or grid based models, where finite number
of MBSs are placed as regularly spaced points on a plane. On
the contrary, as discussed next, several different configurations
corresponding to variety of real-life deployment scenarios are
considered for modeling the locations of users and SBSs
(usually pico and femto cells) [9, Section A.2.1.1.2]. In all
the discussions corresponding to 3GPP scenarios, we will
intentionally use keywords reserved for referring to these
configurations in the 3GPP documents.

Users. The spatial distribution of users within a macro cell is
either “uniform”1 (i.e. homogeneous) or “clustered” forming
hotspots (see Fig. 1 for an illustration). Thus, a fraction of
users in a macro cell are uniformly distributed inside the
cell, and the rest are clustered around the SBS locations,
more specifically are distributed uniformly at random within a
circular region of constant radius centered around each SBS.

13GPP documents have an alternative interpretation of “uniform” users: it
means number of users per macro cell is the same. Otherwise, the users are
“non-uniform” meaning that different macro cells have different number of
users. This differentiation does not appear in our discussion.
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Fig. 2: Spatial distribution of SBSs in 3GPP HetNet model: (1) SBSs
deployed at higher density at certain areas (indoor models), (2) SBSs
deployed randomly or under some site planning, and (3) a single SBS
deployed at the center of a user hotspot.

Base stations. The MBSs are placed deterministically in
a grid. The SBS locations inside a macro cell are either
“uncorrelated” (meaning that they are distributed uniformly at
random inside a macro cell) or “correlated”. This correlation is
induced by different site planning optimization strategies, such
as (i) more SBSs are deployed at user hotspots for capacity
enhancement, and (ii) some locations at cell edge are selected
for SBS placement to maximize the cell edge coverage. See
Fig. 2 for an illustrative example.

These configurations of user and BS placements provide a
rich set of combinations to study variety of real-word deploy-
ment scenarios for HetNets. These different combinations are
summarized in Table I, which appears in [8].

In parallel to these efforts by 3GPP, analytical HetNet
models with foundations in stochastic geometry have gained
prominence in the last few years [10]–[12]. The main idea
here is to endow the locations of the BSs and users with
distributions and then use tools from stochastic geometry
to derive easy-to-compute expressions for key performance
metrics, such as coverage and rate2. In order to maintain
tractability, the locations of the users and different types of BSs
are usually modeled by independent homogeneous PPPs [10]–
[12]. We will henceforth refer to homogeneous PPP as a
PPP unless stated otherwise. This model is usually referred
to as a K-tier HetNet model and was first introduced in [1],
[2]. Despite the simplicity of a PPP, this model is known
to be a reasonable choice for the locations of MBSs [13],
users that are distributed uniformly over the plane, as well
as the SBSs that are located uniformly at random over a
macrocell. Therefore, roughly speaking, this model is capable
of accurately modeling configuration 1 from Table I. However,
this PPP-based model is not rich enough to capture non-
uniformity and coupling across the locations of the users
and SBSs (such as in configurations 2-4 in Table I) [3]–[5],
[14]. In order to capture that accurately, we need to model
these locations using point processes that exhibit inter-point
attraction. A simple way of achieving that, which is also quite

2A careful reader will note that 3GPP models also endow the locations
of users and small cells with distributions, which technically makes them
stochastic models as well.



TABLE I: 3GPP Model Configuration for HetNets (source [8]).

Configuration User Density
Across macro cells

User Distribution
within a macro cell

SBS distribution
within a macro cell

Comments

1 Uniform Uniform Uncorrelated Capacity enhancement
2 Non-uniform Uniform Uncorrelated Sensitivity to non-uniform user density across macro cells
3 Non-uniform Uniform Correlated Cell edge enhancement
4 Non-uniform Clustered Correlated Hotspot capacity enhancement

(a) Model 1: SBS PPP, user PPP (b) Model 2: SBS PPP, user PCP

(c) Model 3: SBS PCP, user PCP (d) Model 4: SBS PCP, user PPP

Fig. 3: Illustration of the four generative models with the combina-
tion of PPP and PCP. The black square, black dot and red dot refer
to the macro BS, SBS and users respectively.

consistent with the 3GPP configurations listed in Table I, is
to use PCPs [15], [16]. By combining PCP with a PPP, we
can create generative models that are rich enough to model
different HetNet configurations of Table I. We discuss these
generative models next.

• Model 1: SBS PPP, user PPP. This is the PPP-based K-
tier baseline model most commonly used in HetNet lit-
erature and is in direct agreement with the 3GPP models
with uniform user and uncorrelated SBS distribution; see
[1], [2], [17]–[19] for a small subset.

• Model 2: SBS PPP, user PCP. Proposed in our recent
work [3], this model can accurately characterize clustered
users and uncorrelated SBSs. In particular, we model the
clustered user and SBS locations jointly by defining PCP
of users around PPP distributed SBSs. This captures the
coupling between user and SBS locations.

• Model 3: SBS PCP, user PCP. As discussed already, the
SBS locations may also be correlated and form spatial
clusters according to the user hotspots for capacity-centric
deployment. For such scenario, two PCPs with the same
parent PPP but independently and identically distributed

(i.i.d.) offspring point processes are used to model the
users and SBS locations. Coupling is modled by having
the same parent PPP for both the PCPs. We proposed and
analyzed this model for HetNets in [4].

• Model 4: SBS PCP, user PPP. This scenario can occur
in conjunction with the previous one since some of the
users may not be a part of the user clusters but are still
served by the clustered SBSs. PPP is a good choice for
modeling user locations in this case [20], [21].

These generative models are illustrated in Fig. 3. In the next
section, we will develop a unified model (of which these gener-
ative models will be special instances), which will significantly
enhance the PPP-based K-tier model of [1], [2].

III. SYSTEM MODEL

We assume a K-tier HetNet consisting of K different types
of BSs distributed as PPP or PCP. In particular, we denote the
point process of the kth BS tier as �k, where �k is either a
PPP with density �k (8k 2 K1) or a PCP (8k 2 K2), where
K1 and K2 are the index sets of the BS tiers being modeled
as PPP and PCP, respectively, with |K1 [K2| = K.

A PCP �k can be uniquely defined as:

�k =

[

z2�pk

z+ Bz

k, (1)

where �pk is the parent PPP of density �pk and Bz

k denotes
the offspring point process where each point at s 2 Bz

k is
i.i.d. around the cluster center z 2 �pk with density fk(s).
If Nk denotes the number of points in Bz

k, then Nk ⇠ pk(n)
(n 2 N). While we put no restriction on pk(n) for the coverage
probability analysis, we later specialize our results for Neyman
Scott processes where Nk ⇠ Poisson(m̄k). An illustration of
the realization of this process is provided in Fig. 4.

We assume that each BS of �k transmits at constant power
Pk. Define �u as the user point process. We perform our
analysis for a typical user which corresponds to a point
selected uniformly at random from �u. Without loss of
generality, the typical user is located at origin. Contrary to
the common practice in the literature, �u is not necessarily
a PPP independent of the BS locations, rather this scenario
will appear as a special case in our analysis. In particular, we
consider three different configurations for users:

• Case 1 (uniform users): �u is a PPP. This corresponds to
Models 1 and 4 from the previous Section.

• Case 2 (clustered users): �u is a PCP with parent PPP
�i (i 2 K1), which corresponds to Model 2 (single SBS
deployed in a user hotspot).
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Fig. 4: A realization of a Matérn cluster process: a special case
of Neyman Scott process where the offspring points are distributed
uniformly inside a disc around the cluster center.

• Case 3 (clustered users): �u is a PCP having same parent
PPP as that of �i (i 2 K2), which corresponds to Model
3 (multiple SBSs deployed at a user hotspot).

Since the locations of the users and BSs are coupled in cases
2 and 3, when we select a typical user, we also implicitly select
the cluster to which it belongs. It will be useful to separate
out the BSs located in this cluster from the rest of the point
process, which we do next. For case 2, let z0 2 �i (i 2 K1)

is the location of the BS at the cluster center of the typical
user. For case 3, let us define the representative BS cluster
Bz0
i ⇢ �i (i 2 K2) having the cluster center z0 which is

also the cluster center of the typical user located at origin.
Having defined all three possible configurations/cases of �u,
we define a set

�0 =

8
><

>:

?; case 1,
{z0}; case 2,
Bz0
i ; case 3.

(2)

This set can be interpreted as the locations of the BSs that lie
in the same cluster as the typical user. By Slivnyak’s theorem,
we can remove �0 from �i without changing the distribution
of �i. Therefore, for case 2, we remove singleton {z0} from
�i(i 2 K1) whereas in case 2, we remove finite process
Bz0
i , which is a representative cluster of BSs with properties

(fi(·), Ni) being inherited from �i (i 2 K2). Note that since
�0 is constructed from �i (i 2 K1 [K2), the transmit power
of the BS(s) is P0 ⌘ Pi. Hence, the BS point process is a
superposition of independent point processes defined as:

� =

[

k12K1

�k1

[

k22K2

�k2

[
�0, (3)

and the corresponding index set is enriched as: K = K1[K2[
{0}. For the ease of exposition, the thermal noise is assumed
to be negligible compared to the interference power. Assuming
the serving BS is located at x 2 �k, SIR(x) is defined as:

SIR(x) =

Pkhx

kxk�↵

I(�k \ {x}) +
P

j2K\{k}
I(�j)

, (4)

where I(�i) =
P

y2�i
Pihy

kyk�↵ is the aggregate interfer-
ence from �i (i 2 K). For the channel model, we assume

signal from a BS at y 2 R2 undergoes independent Rayleigh
fading, more precisely {h

y

} is an i.i.d. sequence of random
variables, with h

y

⇠ exp(1) and ↵ > 2 is the path-loss
exponent. Assuming �k is the SIR-threshold defined for �k

for successful connection and the user connects to the BS that
provides maximum SIR, coverage probability is defined as:

Pc = P
 [

k2K

[

x2�k

{SIR(x) > �k}
�
. (5)

Note that �0 ⌘ �i for cases 2 and 3 defined above. In
the next Section, we derive the main result for the coverage
probability of the typical user under the assumption that all
BSs are operating in open access.

IV. COVERAGE PROBABILITY ANALYSIS

Before going into the coverage probability analysis, we
derive key intermediate results. These results, such as sum
product functionals of PCPs and finite processes, are useful
on their own right.

A. Sum-Product Functionals

We first define sum-product functional over point processes,
which will be useful for the derivation of the coverage prob-
ability expression under max-SIR connectivity.

Definition 1 (Sum-product functional). Sum-product func-
tional of a point process  can be defined as:

E

2

4
X

x2 
g(x)

Y

y2 \{x}

v(x,y)

3

5 , (6)

where g(x) : R2 7! [0, 1] and v(x,y) : [R2⇥R2
] 7! [0, 1] are

measurable.

In the following Lemma, we provide the expression for sum-
product functional when  is a PPP.

Lemma 1. The sum-product functional of  when  is a PPP
(i.e.,  ⌘ �k(k 2 K1)) can be expressed as follows:

E

2

4
X

x2 
g(x)

Y

y2 \{x}

v(x,y)

3

5
= �k

Z

R2

g(x)G(v(x,y))dx,

(7)

where G(·) denotes the probability generating functional
(PGFL) of  .

Proof: We can directly apply Campbell Mecke Theorem
[22] to evaluate (6) as:

E
 X

x2 
g(x)

Y

y2 \{x}

v(x,y)

�

=

Z

R2

g(x)E!
x

Y

y2 
v(x,y)⇤(dx) =

Z

R2

g(x) eG(v(x,y))⇤(dx),

where ⇤(·) is the intensity measure of  and eG(·) denotes
the PGFL of  under its reduced Palm distribution. When



 is homogeneous PPP, ⇤(dx) = �k dx and eG(v(x,y)) =

G(v(x,y)) = E
Q
y2 

v(x,y), by Slivnyak’s theorem [22].

Sum-product functional of  when  is a PCP, i.e.,  ⌘
�k (k 2 K2) requires more careful treatment since selecting
a point from x 2  implies selecting a tuple (x, z), where z

is the cluster center of x. Alternatively, we can assign a two-
dimensional mark z to each point x 2  such that z is the
cluster center of x. Then (x, z) is a point from the marked
point process ˆ

 ⇢ R2 ⇥ R2. It should be noted that ˆ

 is
simply an alternate representation of  , which will be useful
in some proofs in this Section. Taking A,B ⇢ R2, its intensity
measure can be expressed as:

⇤(A,B) = E
 X

(x,z)2 ̂

1

�
x 2 A, z 2 B

��

(a)
= E

2

4
X

z2�pk
\B

m̄k

Z

x2A

fk(x� z)dx

3

5

= m̄k�pk

ZZ

z2B,x2A

fk(x� z)dxdz,

where in step (a), the expression under summation is the in-
tensity of z+Bz

k, i.e., the offspring process with cluster center
at z. The last step follows from the application of Campbell’s
theorem [22]. Hence, ⇤(dx, dz) = �pkm̄kfk(x� z) dz dx.

Lemma 2. The sum-product functional of  when  is a PCP
(i.e.,  = �k(k 2 K2)) can be expressed as follows:

E

2

4
X

x2 
g(x)

Y

y2 \{x}

v(x,y)

3

5

=

ZZ

R2⇥R2

g(x) eG(v(x,y)|z)⇤(dx, dz), (8)

where

eG(v(x,y)|z) = G(v(x,y)) eGc(v(x,y)|z) (9)

denotes the PGFL of  when a point x 2  with cluster
center at z is removed from  . G(·) is the PGFL of  and
eGc(·|z) is the PGFL of a cluster of  centered at z under its
reduced Palm distribution.

Proof: Starting from (6) we apply Campbell Mecke
theorem on ˆ

 as follows:

E
 X

(x,z)2 ̂

g(x)
Y

(y,z0)2 ̂\(x,z)

v(x,y)

�

=

ZZ

R2⇥R2

E!
(x,z)


g(x)

Y

(y,z0)2 ̂

v(x,y)

�
⇤(dx, dz).

The Palm expectation in the last step can be simplified as:

E!
(x,z)


g(x)

Y

(y,z0)2 ̂

v(x,y)

�

= g(x)E
 Y

y2 \(z+Bz

k)

v(x,y)
Y

y2(z+Bz

k)\{x}

v(x,y)

�

= g(x)E
 Y

y2 
v(x,y)

�
E
 Y

y2(z+Bz

k)\{x}

v(x,y)

�
,

where the last step is obtained by Slivnyak’s theorem [22].
Substituting the PGFLs as E

Q
y2 

v(x,y) = G(v(x,y)), and

E
Q

y2z+Bz

k\{x}
v(x,y) = E!

x

Q
y2z+Bz

k

v(x,y) =

eGc(v(x,y)|z),

we get the final result.
The similar steps for the evaluation of the sum-product

functional can not be followed when  is a finite point process,
specifically,  = z + Bz

k, the cluster of a randomly chosen
point x 2 �k (k = 0) centered at z.

Lemma 3. The sum-product functional of  when  is the
cluster of a randomly chosen point x 2 �k (k = 0) with
cluster center located at z can be expressed as follows:

E

2

4
X

x2 
g(x)

Y

y2 \{x}

v(x,y)

3

5
=

1X

n=1

Z

R2

g(x)

✓ Z

R2

v(x,y)

⇥ fk(y � z)dy

◆n�1

fk(x� z)dx n2 pk(n)
m̄k

. (10)

Proof: Note that  is conditioned to have at least one
point (the one located at x) and the number of points in  
follows a weighted distribution, eN ⇠ npk(n)

m̄k
(n 2 Z+) [22].

Now, starting from (6),
Z

N

X

x2 
g(x)

Y

y2 \{x}

v(x,y)P (d )

(a)
=

1X

n=1

Z

Nn

X

x2 
g(x)

Y

y2 \{x}

v(x,y)P (d )

=

1X

n=1

Z
· · ·

Z

[x1,...,xn]2R2n

nX

i=1

g(xi)

 nY

j=1,
j 6=i

v(xi,xj)fk(xj � z)dxj

�

⇥ fk(xi � z)dxi
npk(n)
m̄k

=

1X

n=1

n

Z

R2

g(x)

0

@
Z

R2

v(x,y)fk(y � z)dy

1

A
n�1

⇥ fk(x� z)dx n
pk(n)
m̄

,

where N denotes the space of locally finite and simple point
sequences in R2. In (a), N is partitioned into {Nn : n � 1}
where Nn is the collection of point sequences having n points.
This completes the proof.

B. PGFL of a Cluster of PCP
We assume that  is a cluster of �k (k 2 K2) centered at

z. We present the expressions of the PGFLs of  with respect
to its original and reduced Palm distribution in the following
Lemmas.

Lemma 4. The PGFL of  can be expressed as:

Gc(v(x,y)|z) = E

2

4
Y

y2 
v(x,y)

3

5



= M
✓ Z

R2

v(x,y)fk(y � z)dy

◆
, (11)

where M(z) is the PGFL of the number of points in  , i.e.,
Nk.

Proof: The proof directly follows the definition of PGFL
and is skipped.

Lemma 5. The PGFL of under its reduced Palm distribution
is given by:

eGc(v(x,y)|z) = E

2

4
Y

y2 \{x}

v(x,y)

3

5

=

1X

n=1

✓ Z

R2

v(x,y)fk(y � z)dy

◆n�1

n
pn(k)
m̄k

. (12)

Proof: The PGFL of  can be written as:

eGc(v(x,y)|z) =
Z

N

Y

y2 
v(x,y)P !

x

(d )

(a)
=

1X

n=1

Z

Nn

nY

y2 \{x}

v(x,y)P (d )

=

1X

n=1

0

@
Z

R2

v(x,y)fk(y � z)dy

1

A
n�1

n
pn(k)
m̄k

.

Note that we have partitioned N in the same way as we did in
the proof of Lemma 3. Since we condition on a point x of  
to be removed, it implies that  will have at least one point.
Hence, the number of points in  will follow the weighted
distribution: ˜N ⇠ npn(k)

m̄k
(as was the case in Lemma 3).

C. Coverage Probability
We now provide our main result for coverage probability in

the following Theorem.

Theorem 1. Assuming that the typical user connects to the
BS providing maximum SIR and �k > 1, 8 k 2 K, coverage
probability can be expressed as follows:

Pc = E
 X

x2�0

Y

j2K\{0}

Gj(v0,j(x,y))
Y

y2�0\{x}

v0,0(x,y)

�
+

X

k2K1

Z

R2

eGk(vk,k(x,y))
Y

j2K\{k}

Gj(vk,j(x,y))⇤k(dx)+

X

k2K2

ZZ

R2⇥R2

eGk(vk,k(x,y)|z)
Y

j2K\{k}

Gj(vk,j(x,y))⇤k(dx, dz),

(13)

where

vi,j(x,y) =
1

1 + �i
Pj

Pi

� kxk
kyk

�↵ , (14)

⇤k(dx) = �kdx (k 2 K1), and ⇤k(dx, dz) = �pkm̄kfk(x �
z)dzdx (k 2 K2). Here, Gk(·) and eGk(·) denote the PGFLs of
�k with respect to its original and reduced Palm distribution.

Proof: See Appendix A.

We observe that Pc is the summation of (K +1) terms due
to the contribution of (K+1) tiers in �. Except the first term,
the rest K terms (k 2 K \ {0}) are in form of the product of
PGFLs of �k (k 2 K) integrated with respect to the intensity
measure due to the application of Lemmas 1 and 2. The first
term will be handled separately in Lemma 9 for different cases
corresponding to the user distributions (cases 1-3 defined in
Section III). In the following Lemmas, we evaluate the PGFLs
of �j (j 2 K) with respect to the original and reduced palm
distributions of �k (k 2 K), at vk,j(x,y) given by (14), which
can be directly substituted in (13) to obtain the final expression
of Pc. While Theorem 1 is general and applicable for any PCP,
we specialize our results for Neyman-Scott processes hereafter.

Lemma 6. The PGFL of �j (j 2 K \ {0}) evaluated at
vk,j(x,y) is expressed as:

Gj(vk,j(x,y)) = exp

✓
� ⇡�j

✓
Pj�k
Pk

◆ 2
↵

kxk2C(↵)

◆
;

8j 2 K1, (15)

Gj(vk,j(x,y)) = exp

⇣
� �pk

Z

R2

�
1� µk,j(x, z)

�
dz

⌘
;

8j 2 K2, (16)

with µk,j(x, z) = exp

⇣
�m̄j

R
R2

⇣
1

1+
Pkkyk↵

�kPjkxk↵

⌘
fj(y�z)dy

⌘

and C(↵) = 1
sinc( 2

↵ )
.

Proof: See Appendix B.
In the next Lemma, we characterize the PGFL of �0. Note

that this case is handled separately since the definition of �0

depends on the user configurations to be considered.

Lemma 7. The PGFL of �0 is given by:
• case 1: G0(vk,0(x,y)) = 1,
• case 2: G0(vk,0(x,y)) =

R
R2

1

1+
P0�k
Pk

kxk↵kyk�↵
f0(y)dy,

• case 3: G0(vk,0(x,y)|z) = µk,0(x, z),

where µk,0(x, z) is given by Lemma 6.

Proof: See Appendix C.
Having characterized the expressions of PGFLs evaluated

at vk,j(x,y) 8j 2 K, we now focus on the evaluation of the
PGFL of �k with respect to its reduced Palm distribution.

Lemma 8. The PGFL of �k (k 2 K \ {0}) under its reduced
Palm distribution is given by:

eGk(vk,k(x,y)) = Gk(vk,k(x,y)); when k 2 K1, (17)

eGk(vk,k(x,y)|z) = exp

⇣
� �pk

Z

R2

�
1� µk,k(x, z

0
)

�
dz

0
⌘

exp

⇣
�m̄k

⇣Z

R2

(1�vk,k(x,y))fk(y�z)dy

⌘⌘
;when k 2 K2,

(18)

where Gk(vk,k(·)) and µk,k(·) are given by Lemma 6.

Proof: See Appendix D.
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Fig. 5: Comparison of the coverage probability in Model 1 and 2
(↵ = 4, Pm = 1000Ps, �s = 100�s, and �s = �m = �).

Referring to (13), we denote the first term under summation
as:

Pc0 = E
 X

x2�0

Y

j2K\{0}

Gj(v0,j(x,y))
Y

y2�0\{x}

v0,0(x,y)

�
.

(19)

This term is now evaluated for the three cases next.

Lemma 9. If �0 = ? (case 1) then,

Pc0 = 0. (20)

If �0 = {z} (case 2) then,

Pc0 =

Z

R2

Y

j2K\{0}

Gj(v0,j(x,y))f0(x)dx. (21)

If �0 = Bz0
i (case 3) then Pc0 =

Z

R2

Z

R2

exp

✓
� m̄0

✓Z

R2

⇣
1� v0,0(x,y)

⌘
f0(y � z)dy

◆◆

⇥
⇣
m̄0

Z

R2

v0,0(x,y)f0(y � z)dy + 1

⌘

⇥
Y

j2K\{0}

Gj(v0,j(x,y))f0(x� z)f0(z) dx dz, (22)

where Gj(·) is given by Lemma 7.

Proof: See Appendix E.

V. RESULTS AND DISCUSSION

In this section, we compare the performance of Models 1-4
in terms of the coverage probability. For this comparison, we
assume that MBSs transmit at fixed power Pm and distributed
as a PPP of density �m in all four models. In Fig. 5, we
compare the coverage probability of Models 1 and 2, where
SBSs are spatially distributed as a PPP with density �s and
transmit at power Ps. Following the notion of “clustered”
users in 3GPP models, the non-uniformly distributed users
are assumed to be a realization of a Matérn cluster process
(MCP) in Model 2. This means that users are assumed to be
uniformly distributed within a disk of radius rd around SBSs.
As evident from Fig. 5, the coverage probability decreases
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Fig. 6: Comparison of the coverage probability in Model 1, 3, and
4 (↵ = 4, Pm = 1000Ps, m̄ = 3, and �s = �m = �).

as rd increases and converges towards that of Model 1. The
limiting nature of the coverage probability and its convergence
to Model 1 as cluster radius goes to infinity is formally proved
in [3], where the typical user is served by the BS that provides
maximum received power averaged over fading. The reason of
the coverage boost for denser cluster is that the SBS at cluster
center lies closer to the typical user with high probability,
hence improving the signal quality of the serving link.

Next, we plot coverage probability of Models 1, 3, and 4 in
Fig. 6. In Model 3, user and SBS locations are two independent
realizations of an MCP conditioned on its parent PPP. More
precisely, user and SBS clusters are colocated around the same
set of cluster centers and have the same cluster radius, i.e., rd.
While SBSs in Model 4 are also assumed to be realizations
of an MCP, users are independently distributed in R2. From
Fig. 6, it can be deduced that increasing rd has a conflicting
effect on coverage probability of Model 3 and 4: coverage
probability of Model 4 increases whereas that of Model 3
decreases. For Model 3, as rd increases, the collocated user
and SBS clusters become sparser and the candidate serving
SBS lies farther to the typical user with high probability.
On the contrary, for Model 4 where the users locations are
independent and uniform over space, the distance between the
candidate serving SBS and the typical user decreases more
likely with the increment of rd.

VI. CONCLUSION

In this paper, we developed a unified HetNet model by
combining PPP and PCPs that accurately models variety of
spatial configurations for SBSs and users considered in the
3GPP simulation models. This is a significant generalization of
the PPP-based K-tier HetNet model of [1], [2], which was not
rich enough to model non-uniformity and coupling across the
locations of users and SBSs. For this model, we characterized
the downlink coverage probability under max-SIR cell associ-
ation. As a part of our analysis, we evaluated the sum-product
functional for PCP and the associated offspring point process.
This work has numerous extensions. An immediate extension
is the coverage probability analysis with the relaxation of the
assumption on SIR-thresholds (�k) being greater than unity.
From stochastic geometry perspective, this will necessitate



the characterization of the n-fold Palm distribution of PCP
and its offspring point process. Extensions from the cellular
network perspective involve analyzing other metrics like rate
and spectral efficiency in order to obtain further insights into
the network behavior. Coverage probability analysis under this
setup for uplink is another promising future work. From mod-
eling perspective, we can incorporate more realistic channel
models e.g. shadowing and general fading.

APPENDIX

A. Proof of Theorem 1
Under the assumption that �k > 1, 8 k 2 K, there will be

at most one BS 2 � satisfying the condition for coverage [2].
Continuing from (5),

Pc =
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. (23)

Here, step (a) follows from h
x

⇠ exp(1). The final step
follows from the independence of �k, 8 k 2 K, where,

⇥k(x) =

Y

j2K\{k}

E exp

✓
��k
Pk

I(�j)kxk↵
◆

=

Y

j2K\{k}

E exp

0

@��kkxk
↵

Pk

X

y2�j

Pjhy

kyk�↵
1

A

=

Y

j2K\{k}

E
Y

y2�j

Eh
y

exp

✓
��kkxk

↵

Pk
Pjhy

kyk�↵
◆

(a)
=

Y

j2K\{k}

E
Y

y2�j

1

1 + �k
Pj

Pk

⇣
kxk
kyk

⌘↵

=

Y

j2K\{k}

Gj(vk,j(x,y)).

Step (a) follows from the fact that {h
y

} is an i.i.d. sequence
of exponential random variables. Following from (23), we get,
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The exponential term can be simplified following on similar
lines as that of ⇥k(x).

Thus Pc can be written as the summation of K + 1 terms
each in sum-product form defined in (6). For k 2 K1 and
k 2 K2, the final result is obtained by direct application of
Lemmas 1 and 2, respectively.

B. Proof of Lemma 6
When j 2 K1, Gj(vk,j(x,y)) is the PGFL of PPP which

is given by [23, Theorem 4.9]:

Gj(vk,j(x,y)) = exp

0

@�
Z

R2

(1� vk,j(x,y))�jdy

1

A . (24)

When k 2 K2, Gj(vk,j(x,y)) is the PGFL of PCP which is
given by [23, Theorem 4.9]:

Gj(vk,j(x,y)) = exp

✓
� �pk

Z

R2

✓
1�M

✓Z

R2

vk,j(x,y)

⇥ fj(y � z)dy

◆
dz

◆◆
, (25)

where M(z) = E(zNj
) = exp(�m̄j(1 � z)) is the moment

generating function of Nj (j 2 K2). Finally we substitute
vk,j(x,y) given by (14) to obtain the desired expressions.

C. Proof of Lemma 7
In case 1, �0 is a null set if users are distributed according

to a PPP, and hence G0(vk,0(x,y)) = 1. In case 2, where
users are distributed as a PCP with parent PPP �j (j 2 K1),

G0(vk,0(x,y)) =

Z

R2

vk,0(x,y)f0(y)dy. (26)

In case 3, �0 is a cluster of �j (j 2 K2) centered at z. Its
PGFL is provided by Lemma 4 with the substitution M(z) =
exp(�m̄j(1� z)) for Neyman Scott process.

D. Proof of Lemma 8
When k 2 K1, �k is a PPP and its reduced palm distribution

is the same as its original distribution (Slivnyak’s theorem,
[22]). However, this is not true for PCP (when k 2 K2).
Denote by Ak = Bz

k + z, the cluster within which the serving
BS is located. The PGFL with respect to the reduced palm
distribution of a PCP can be derived as:

eGk(vk,k(x,y)|z) = E
h Y

y2�k\{x}

vk,k(x,y)
i (a)
= Gk(vk,k(x,y))

⇥ E
⇥ Y

y2Ak\{x}

vk,k(x,y)
⇤
= Gk(vk,k(x,y)) eGc(vk,k(x,y)|z),

where (a) follows from Slivnyak’s theorem and definition of
PGFL. The final result follows from Lemma 5 along with the
fact that Nk = Poisson(m̄k) for Neyman Scott process.

E. Proof of Lemma 9
Case 1 is trivial. For case 2, �0 has only one point

with distribution f0(z). For case 3, we use Lemma 3 where
g(x) =

Q
j2K\{0}

Gj(v0,j(x,y)) and v(x,y) = v0,0(x,y) and

substitute pk(n) follows Poisson distribution. Hence,
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