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Abstract—Content delivery networks store information dis-
tributed across multiple servers, so as to balance the load and
avoid unrecoverable losses in case of node or disk failures.Coded
caching has been shown to be a useful technique which can
reduce peak traffic rates by pre-fetching popular content atthe
end users and encoding transmissions so that different users can
extract different information from the same packet. On one hand,
distributed storage limits the capability of combining content
from different servers into a single message, causing performance
losses in coded caching schemes. But, on the other hand, the
inherent redundancy existing in distributed storage systems can
be used to improve the performance of those schemes through
parallelism.

This paper designs a scheme combining distributed storage of
the content in multiple servers and an efficient coded caching
algorithm for delivery to the users. This scheme is shown to
reduce the peak transmission rate below that of state-of-the-art
algorithms.

I. I NTRODUCTION

For several decades, CPUs have doubled their speed every
two years in what is commonly known as Moore’s law, but the
storage technology has not been able to keep up with this trend:
magnetic hard drives have steadily increased their capacity,
but not their speed. Current computers and communication
networks are not limited by the speed at which information
can be processed, but rather by the speed at which it can be
read, moved, and written. Furthermore, the recent information
explosion is driving an exponential increase in the demand for
data, which is not expected to slow down any time soon. Users
and applications demand more data at higher speeds, straining
the devices and networks to their maximum capabilities.

The IT industry has addressed this problem through par-
allelism and caching: instead of using a single high capacity
storage drive to serve all the requests, networks usually dis-
tribute popular files across multiple independent servers that
can operate in parallel and cache part of the information at
intermediate or final nodes. This paper proposes and analyzes
multiple caching mechanisms for multi-server systems with
different system parameters. Previous literature has addressed
coded caching for single server systems and distributed storage
without caching but, to the extent of our knowledge, this is
the first work that considers both coded caching at the users
and distributed storage at the servers. Furthermore, it provides
solutions for systems with and without file striping (i.e. with
files split among multiple servers and with whole files stored
in each server).

Distributed storage deals with how the information is stored
at the servers. Disk failures are very common in large storage

systems, so they need to have some amount of redundancy.
Erasure codes have recently sparked a renewed interest from
the research community for this task. Files are encoded and
distributed among a set of nodes (disks, servers, etc.) in such
a way that the system can recover from the failure of a certain
number of nodes [1], [2]. One widely used distributed storage
technique based on erasure codes is RAID (redundant array of
independent disks). It combines multiple storage nodes (disks,
servers, etc.) into a single logical unit with data redundancy.
Two of the most common are RAID-4 and RAID-6, consisting
of block-level striping with one and two dedicated parity
nodes, respectively [3], [4]. Most large scale systems use some
form of RAID with striping across multiple storage drives, but
store or replicate whole files as a single unit in the network
nodes (e.g.data centers) [5]. This increases the peak rate, but
it also simplifies book-keeping and deduplication, improves
security, and makes the network more flexible.

Coded caching deals with the high temporal variability of
network traffic: the peak traffic in the network is reduced by
pre-fetching popular content in each receiver’s local cache
memory during off-peak hours, when resources are abundant.
Coded caching has also recently become quite popular among
the coding community, starting with the work by Maddah-
Ali and Niesen in [6], which focused on how a set of users
with local memories can efficiently receive data from a single
server through a common link. Their seminal paper proposed a
caching and delivery scheme offering a worst case performance
within a constant factor of the information-theoretic optimum,
as well as upper and lower bounds on that optimum. The
lower bounds were later refined in [7] and new schemes were
designed to consider non-uniform file sizes and popularity [8],
[9], [10]; multiple requests per user [11], [12]; variable number
of users [13]; and multiple servers with access to the whole
library of files [14].

Maddah-Ali and Niesen’s work in [6] caches the information
uncoded and encodes the transmitted packets. This scheme
performs well when the cache size is relatively large, but a
close inspection shows that there are other cases in which its
performance is far from optimal. Tian and Chen’s recent work
in [15] designs a new algorithm which encodes both the cached
and transmitted segments to achieve a better performance
than [6] when the cache size is small or the number of users
is greater than the number of files. However, this scheme also
focuses on a single server system. In this paper, we aim to
design a joint storage and transmission protocol for the multi-
server multi-user system.
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Summarizing, prior work on distributed storage has studied
how a single user can efficiently recover data distributed
across a set of nodes and prior work on coded caching has
studied how a set of users with local memories can efficiently
receive data from a single node. However, to the extent of our
knowledge, it has not been studied how the cache placement
and content delivery should be performed when multiple nodes
send data to multiple users through independent channels. In
this paper, we aim to design a joint storage and transmission
protocol for the multi-server multi-user system. We combine
distributed storage with coded caching utilizing parallelism
and redundancy to reduce the peak traffic rate. The main
contributions of our paper are: (1) a flexible model for multi-
server systems where each files can be divided among multiple
servers or kept as a single block in one server; (2) an extension
of the coded caching algorithms in [6] and [15] to striping
multi-server systems; (3) new caching and delivery schemes
with significantly lower peak rates for the case when files are
stored as a single unit in a data server.

The rest of the paper is structured as follows: Section II
introduces the system model and two existing coded caching
algorithms for single server systems, namely the one proposed
by Maddah-Ali and Niesen in [6] and the interference elimi-
nation scheme in [15]. Section III extends both algorithms to a
multi-server system with file striping, while Sections IV and V
consider the case where servers store whole files. Specifically,
Section IV extends Maddah-Ali and Niesen’s scheme, suitable
for systems with large cache capacity, and Section V extends
the interference elimination scheme, which provides better
performance when the cache size is small. Finally, Section VI
provides simulations to support and illustrate our algorithms
and section VII concludes the paper.

II. BACKGROUND

This section describes the multi-node multi-server model
in II-A and then reviews two existing coded caching schemes
that constitute the basis for our algorithms. Subsection II-B
summarizes Maddah-Ali and Niesen’s coded caching scheme
from [6] and subsection II-C summarizes Tian and Chen’s
interference elimination scheme from [15].

A. System Model

We consider a network withK users1 andN files stored
in L data servers. Some parts of the paper will also include
additional parity servers, denoted parity serverP when stor-
ing the bitwise XOR of the information in the data servers
(RAID-4) and parity serverQ when storing a different linear
combination of the data (RAID-6). The network is assumed to
be flexible, in the sense that there is a path from every server
to every user [14]. Each server stores the same number of files
with the same size and each user has a cache with capacity
for M files. For the sake of simplicity, this paper assumes that
all files have identical length and popularity.

1Servers and users can be anything from a single disk to a computer cluster,
depending on the application.

The servers are assumed to operate on independent error-
free channels, so that two or more servers can transmit
messages simultaneously and without interference to the same
or different users. A server can broadcast the same message to
multiple users without additional cost in terms of bandwidth,
but users cannot share the content of their caches with each
other. This assumption makes sense in a practical setting since
peer-to-peer content sharing is generally illegal. Also, users
typically have an asymmetric channel, with large download
capacity but limited upload speed.

Similarly, each server can only access the files that it is
storing, not those stored on other servers. A server can read
multiple segments from its own files and combine them into
a single message, but two files stored on different servers
cannot be combined into a single message. However, it will be
assumed that servers are aware of the content cached by each
user and of the content stored in other servers, so that they can
coordinate their messages. This can be achieved by exchanging
segment IDs through a separate low-capacity control channel
or by maintaining a centralized log.

The problem consists of two phases: placement and delivery.
During the placement phase, the content is stored in the user’s
caches. The decisions on where to locate each file, how to
compute the parity, and what data to store in each cache are
made based on the statistics for each file’s popularity, without
knowledge of the actual user requests. In our paper, we assume
all the files have the same popularity. The delivery phase starts
with each user requesting one of the files. All servers are made
aware of these requests and proceed to send the necessary
messages.

Throughout the paper, we use subindices to represent file
indices and superindices to represent segment indices, soF j

i

will represent the j-th segment from fileFi. Some parts of
the paper will also use different letters to represent files from
different servers. For example,Ai to represent the i-th file
from server A andAj

i to represent the j-th segment from file
Ai. The paper focuses on minimizing the peak rate (or delay),
implicitly assuming that different users request different files.
Therefore, we will indistinctly refer to users or their requests.

B. Maddah-Ali and Niesen’s scheme

The coded caching scheme proposed by Maddah-Ali and
Niesen in [6] has a single server storing all the files
{F1, F2 . . . , FN}, and users are connected to this server
through a shared broadcast link. Their goal is to design caching
and delivery schemes so as to minimize the peak load on the
link, i.e. the total amount of information transferred from the
server to the users. This scheme splits each fileFi into

(

K
t

)

nonoverlapping segmentsF j
i of equal size,j = 1, . . .

(

K
t

)

,
with t = KM

N , and caches each segment in a distinct group
of t users. In other words, each subset oft users is assigned
one segment from each file for all the users to cache2. In the

2Parametert is assumed to be an integer for the sake of symmetry.
Otherwise some segments would be cached more often than others, requiring
special treatment during the delivery phase and complicating the analysis
unnecessarily.



delivery phase the server sends one message to each subset of
t+1 users, for a total of

(

K
t+1

)

messages. This caching scheme
ensures that, regardless of which files have been requested,
each user in a given subset oft+1 nodes is missing a segment
that all the others have in their cache. The message sent to that
subset of nodes consists of the bitwise XOR of allt+1 missing
segments: a set of usersS requesting filesFi1 , Fi2 , . . . , Fit+1

would receive the message

mS = F j1
i1

⊕ F j2
i2

⊕ · · · ⊕ F
jt+1

it+1
, (1)

wherejk is the index for the segment cached by all the users
in the set except the one requestingFik . Each user can then
cancel out the segments that it already has in its cache to
recover the desired segment. In the worst case,i.e. when all
users request different files, this scheme yields a (normalized
by file size) peak rate of

RC(K, t) =

(

K

t+ 1

)

/

(

K

t

)

= K(1−M/N)
1

1 +KM/N
. (2)

Under some parameter combinations, broadcasting all the
missing segments uncoded could require lower rate than
RC(K, t), so the generalized peak rate is

min {RC(K, t), N −M}

but this paper will ignore those pathological cases, assuming
thatN , M , andK are such thatRC(K, t) ≤ N −M . It has
been shown that this peak rate is the minimum achievable for
some parameter combinations and falls within a constant factor
of the information-theoretic optimum for all others [6][7].

This scheme, henceforth refered to as “Maddah’s scheme”
will be the basis for multiple others throughout the paper. It
is therefore recommended that the reader has a clear under-
standing of Maddah’s scheme before proceeding.

C. Interference Elimination

A close examination of Maddah’s algorithm reveals that it
has poor performance when the cache is small andN ≤ K.
Thus, a new coded caching scheme based on interference
elimination was proposed by Tian and Chen in [15] for the
case where the number of users is greater than the number
of files. Instead of caching file segments in plain form, they
propose that the users cache linear combinations of multiple
segments. After formulating the requests, undesired termsare
treated as interference that needs to be eliminated to recover
the requested segment. The transmitted messages are designed
to achieve this using maximum distance separable (MDS)
codes [16][17].

In the placement phase, this scheme also splits each file into
(

K
t

)

non-overlapping segments of equal size and each segment
is cached byt users, albeit combined with other segments. Let
FS
i , whereS ⊆ {1, 2, . . . ,K} and |S| = t, denote the file

segment from fileFi chosen to be cached by the users inS.
In the placement phase userk collects the file segments

{FS

i |i ∈ {1, 2, . . . , N}, k ∈ S}, (3)

(P =
(

K−1
t−1

)

N in total), encodes them with a MDS code
C(P0, P ) of length P0 = 2

(

K−1
t−1

)

N −
(

K−2
t−1

)

(N − 1), and
stores theP0 − P parity symbols in its cache.

The delivery phase proceeds as if all the files are requested.
When only some files are requested, the scheme replaces some
users’ requests to the “unrequested files” and proceeds as ifall
files were requested. A total of

(

K−1
t

)

messages are transmitted
(either uncoded or coded) for each fileFi, regardless of the
requests. Uncoded messages provide the segments that were
not cached by the users requestingFi, while coded messages
combining multiple segments fromFi are used to eliminate
the interference in their cached segments. Each user gathers
(

K−2
t−1

)

(N − 1) useful messages which, together with theP −
P0 components stored in its cache, are enough to recover all
P components in theC(P0, P ) MDS code. A more detailed
description of the messages can be found in [15].

Therefore, the total number of messages transmitted from
the server isN

(

K−1
t

)

. In this interference elimination scheme,
the following normalized(M,R) pairs are achievable:

(

t [(N − 1)t+K −N ]

K(K − 1)
,
N(K − t)

K

)

, t = 0, 1, . . . ,K.

(4)
This scheme is shown to improve the inner bound given in [6]
for the caseN ≤ K and has a better performance than the
algorithm in subsection II-B when the cache capacity is small.

D. Extension to multiple servers

Both of the previous schemes assume that a single server
stores all the files and can combine any two segments into a
message. Then, they design a list of messages to be broadcast
by the server, based on the users’ requests. In practice,
however, it is often the case that content delivery networks
have multiple servers and throughput is limited by the highest
load on any one server rather than by the total traffic in the
link between servers and users. Shariatpanahi et al. addressed
this case in [14], but still assumed that all servers had access
to all the files and could therefore compose any message. They
proposed a load balancing scheme distributing the same listof
messages among all the servers, scaling the peak rate by the
number of servers.

If each server only has access to some of the files, the
problem is significantly more complicated. The general case,
where each segment can be stored by multiple servers and
users, is known as the index coding problem. This is one
of the core problems of network information theory but it
remains open despite significant efforts from the research
community [18], [19], [20]. Instead of addressing the index
coding problem in its general form, we focus on the case where
each data segment is stored in a single server, all caches have
the same capacity, and users request a single file.



A simple way to generalize the previous schemes to our
scenario is to follow the same list of messages, combining
transmissions from multiple servers to compose each of them.
Instead of receiving a single message with all the segments as
shown in Eq. (1), each node would receive multiple messages
from different servers. The peak rate for any one server would
then be the same as in a single server system.

With parity servers storing linear combinations of the data,
the peak rate can be reduced. In general, distributed storage
systems use MDS codes for the parity3, so any subset ofL
servers can be used to generate any message. Therefore, a
simple balancing of the load by rotating among all subsets of
L servers would scale the peak rate byLL+L′ , whereL′ is
the number of parity servers. However, we intend to design
caching and delivery algorithms capable of further reducing
the peak rate of any one server.

III. F ILE STRIPING

The simplest way to extend single-server coded caching
algorithms to a multi-server system is to spread each file across
all servers. That way, each user will request an equal amount
of information from each server, balancing the load. This is
called data striping [24] and it is common practice in data
centers and solid state drives (SSD), where multiple drivesor
memory blocks can be written or read in parallel. The users
then allocate an equal portion of their cache to each server
and the delivery is structured asL independent single-server
demands. We now proceed to give a detailed description of
how striping can reduce the peak rate of Maddah’s scheme,
but the same idea can be applied to any other scheme.

Each of theN files {F1, F2 . . . , FN} is split intoL blocks
to be stored in different servers and each block is divided into
(

K
t

)

segments. These segments are denoted byF
(j,m)
i , where

i = 1, 2, . . . , N represents the file number;j = 1, 2, . . . ,
(

K
t

)

the segment number; andm = 1, 2, . . . , L the block number.
Them-th server is designed to store them-th segment of each
file, that isF (j,m)

i for every i andj.
The placement is the same as in Maddah’s scheme. Each

segment is cached byt users, with{F (j,1)
i , F

(j,2)
i , . . . , F

(j,L)
i }

being cached by the same user. We notice that each message
transmitted by Maddah’s scheme in Eq. (1) can be split into
L components

F
(j1,m)
i1

⊕ F
(j2,m)
i2

⊕ · · · ⊕ F
(jt+1,m)
it+1

, (5)

m = 1, 2, . . . , L to be sent by different servers. Then the
problem can be decomposed intoL independent single-server
subproblems with reduced file sizes ofF

L bits. The subprob-
lems have the same number of users, files, and cache capacity
(relative to the file size) as the global problem. Since all servers
can transmit simultaneously, the peak load is reduced to1

L of
that in Eq. (2) (Maddah’s single server scheme).

If one additional parity serverP is available (RAID-4), it
will store the bitwise XOR of the blocks for each file,i.e.

3Some systems use repetition or pyramid codes [21][22][23] to reduce the
recovery bandwidth, but this paper will focus on MDS codes.

Server A Server B · · · Server L
A1 B1 · · · L1

A2 B2 · · · L2

...
...

...
Ar Br · · · Lr

TABLE I: Files stored in each server

F
(j,1)
i ⊕ F

(j,2)
i ⊕ · · · ⊕ F

(j,L)
i for all i and j. Then, serverP

can take over some of the transmissions, reducing the peak
load to 1

L+1 of that with Maddah’s scheme4. Specifically,
instead of having all data servers transmit their corresponding
component in Eq. (5), serverP can transmit the XOR of all
the components, relieving one data server from transmitting.
The users can combine the rest of the components with this
XOR to obtain the missing one. Similarly, if two additional
parity serversP andQ are available (RAID-6), it is possible
to choose anyL out of theL+2 servers to take care of each
set of messages in Eq. (5), thereby reducing the peak rate to
1

L+2 of that with Maddah’s scheme.
A similar process with identical file splitting can be followed

for the interference cancelling scheme, achieving the same
scaling of the peak rate:1L when there is no parity, 1L+1 with
a single parity server, and1

L+2 with two parity servers.
In practice, however, it is often preferred to avoid striping

and store whole files as a single unit in each server to simplify
the book-keeping, ensure security, and make the network more
flexible. The rest of the paper will focus on the case where
nodes store entire files, and each user requests a file stored in
a specific node.

IV. SCHEME 1: LARGE CACHE

In this section, we extend Maddah-Ali and Niesen’s scheme
to the multiple server system. Instead of spreading each file
across multiple servers as in Section III, each file is storedas
a single unit in a data server, as shown in Table I.

The performance of Maddah’s scheme in Eq. (2) is highly
dependent on the cache capacityM . Compared with the
interference elimination in section II-C, the advantage of
Maddah’s scheme lies in that file segments are stored in plain
form instead of encoded as linear combinations. This saves
some segments from being transmitted in the delivery phase,
but it requires larger cache capacities to obtain coded caching
gains. Hence, Maddah’s scheme is appropriate when the cache
capacity is large.

The placement phase of our algorithm is identical to that in
the traditional scheme. For example, in a system withK = 6
users with cache capacityM = 4 andN = 8 files, each file is
divided into20 segments and each segment is stored byt = 3
users. Table III indicates the indices of the10 segments that
each user stores, assumed to be the same for all files without
loss of generality.

4The number of segments must be a multiple ofL to achieve this reduction,
but it is always possible to divide each segment into multiple chunks to fulfil
this condition.



In order to simplify later derivations, the notation is clarified
here. Since the peak rate for the storage system is considered,
we assume that all users request different files, hence each
user can be represented by the file that it has requested.
DenoteS to be the user set andmS

A to represent the message
sent from serverA to all the users inS. Furthermore, if
ααα = {α1, α2, . . . , αi} represents a vector of file indices and
γγγ = {γ1, γ2, . . . , γi} represents a vector of segment indices,
thenAααα represents the set of requests (or users)

Aααα = {Aα1
, Aα2

, . . . , Aαi
}

andAγγγ
ααα represents the message

A
γγγ
ααα = Aγ1

α1
⊕Aγ2

α2
⊕ . . .⊕Aγi

αi
,

whereAj
i represents thej-th segment from thei-th file in

serverA. Similarly, Aγγγ
ααα ⊕B

γγγ
ααα represents the the message:

A
γγγ
ααα ⊕B

γγγ
ααα = (Aγ1

α1
⊕Bγ1

α1
)⊕ . . .⊕ (Aγi

αi
⊕Bγi

αi
).

We first explore the multi-server system without parity
servers in subsection IV-A. Then we study a simple system
with two data and one parity server in subsection IV-B.
Finally, we study the cases with one and two parity servers
in subsections IV-C and IV-D, respectively.

A. No parity servers

In a system without redundancy, such as the one shown in
Table I, the servers cannot collaborate with each other. During
the delivery phase, each user is assigned to the server storing
the file that it requested, and then each data server transmits
enough messages to fulfil its requests. Specifically, following
Maddah’s scheme, a server receivingm requests would need to
transmit

(

K
t+1

)

−
(

K−m
t+1

)

messages,i.e. one for each group oft
users containing at least one of its requesters. The normalized
peak rate for that server would therefore be

((

K

t+ 1

)

−

(

K −m

t+ 1

))/(

K

t

)

The worst case occurs when all users request files from the
same server,i.e. m = K. Then the peak transmission rate is
the same as in the single server system.

B. One parity and two data servers

This section focuses on a very simple storage system with
two data servers and a third server storing their bitwise XOR,
as shown in Table II. Despite each server can only access
its own files, the configuration in Table II allows composing
any message by combining messages from any two servers.
Intuitively, if server A (or B) finish its transmission task
before the other one, it can work with the parity server to help
serverB (or A). This collaborative scheme allows serving two
requests for files stored in the same server in parallel, balancing
the load and reducing the worst case peak rate below that
achieved without the parity server (see Section IV-A).

However, there is a better transmission scheme where
messages from all three servers are combined to get more

ServerA ServerB ServerP
A1 B1 A1 ⊕ B1

A2 B2 A2 ⊕ B2

...
...

...
Ar Br Ar ⊕ Br

TABLE II: Files stored in each server

information across to the users. The basic idea is to include
some unrequested segments, as well as the requested ones, in
each message from a data server. If the additional segments
are well chosen, they can be combined with messages from
the parity server to obtain desired file segments. The algorithm
developed in this section is based on this idea.

Just like in Maddah’s scheme, data servers will send each
message to a set oft+1 users and the message will contain the
XOR of t + 1 segments (one for each user). These segments
are chosen so that all users except the intended receiver
can cancel them out. If the user had requested a file stored
by the sender, the message will contain the corresponding
segment; otherwise the message will include its complement
in terms of the parity in serverP , i.e. Aj

i instead ofBj
i

and vice versa. Therefore, the contents of each message from
serverA or B are uniquely determined by the sender and
the set of receivers, denoted byS1 or S2 respectively. In the
example shown in Table III, the message from serverA to
S1 = {A1, A2, A3, B4}, corresponding to users 1 through 4,
will be mS1

A = A11
1 ⊕A5

2 ⊕A2
3 ⊕A1

4.
Lemma 4.1:Let the receivers for servers A and B be

S1 = {Aααα,Bβββ ,A∗} S2 = {Aααα,Bβββ ,B∗},

respectively, whereα and β denote (possibly empty) sets
of indices, the∗ denote arbitrary sets, andS1 6= S2. The
corresponding messages are

mS1

A = A
∗
ααα ⊕A

γγγ
βββ ⊕A

∗
∗ mS2

B = B
ηηη
ααα ⊕B

∗
βββ ⊕B

∗
∗,

with segment indices chosen so that each user can cancel all
but one of the components. This provides usersBβββ andAααα

with some unrequested segmentsA
γγγ
βββ and B

ηηη
ααα, respectively.

Then serverP can send the message

mS1∩S2

P = (Aηηη
ααα ⊕B

ηηη
ααα)⊕ (Aγγγ

βββ ⊕B
γγγ
βββ),

to S1 ∩ S2, so that each user inS1 andS2 obtains a missing
segment and those in the intersection obtain two. These three
transmissions are equivalent to messagesmS1 and mS2 as
defined in Eq. (1) for Maddah’s single server scheme. They
both provide the same requested segments to their destinations.

Proof: All the users inS1 andS2 get at least one desired
segment, from the server storing their requested file. Thosein
S1∩S2 also receive an unrequested segment from serverA or
B. It only remains to prove that users inS1 ∩ S2 can use this
unrequested segment to obtain its complement frommS1∩S2

P .
Without loss of generality, consider userBβi

∈ S1∩S2. The
set of segment indicesγ in mS1

A were chosen so that userBβi

is caching all the segments except theγi-th. Similarly, the set



Segment\ User 1 2 3 4 5 6
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X
10 X X X
11 X X X
12 X X X
13 X X X
14 X X X
15 X X X
16 X X X
17 X X X
18 X X X
19 X X X
20 X X X

Request A1 A2 A3 B4 B1 B2

TABLE III: Mapping of file segments to user caches. Each
cache stores the same 10 segments for every file, marked with
X in the table.

of indicesη in mS2

B was chosen so thatBβi
is caching all of

them (for all files). Therefore,Bβi
can obtainAγi

βi
from mS1

A

and should be able to cancel all terms frommS1∩S2

P except
Aγi

βi
⊕Bγi

βi
. Combining both of these yields the desired segment

Bγi

βi
. As long asS1 6= S2, this segment will be different from

the one thatBβi
obtains frommS2

B because there is a one-
to-one relationship between segment indices and user subsets.

Take the case in Table III as an example. Lemma. 4.1 states
that if S1 = {A1, A2, A3, B4} and S2 = {A1, A2, B1, B4},
we constructmS1

A , mS2

B , mS1∩S2

P as:

mS1

A = A11
1 ⊕A5

2 ⊕A2
3 ⊕A1

4,

mS2

B = B14
1 ⊕B8

2 ⊕ B2
1 ⊕B3

4 ,

mS1∩S2

P = (A14
1 ⊕B14

1 )⊕ (A8
2 ⊕B8

2)⊕ (A1
4 ⊕B1

4).

It is easy to verify that these messages are equivalent to two
transmissions in Maddah’s scheme, specifically those intended
for users{A1, A2, A3, B4} and{A1, A2, B1, B4}.

Corollary 4.1.1: AssumeS1 = {A∗,Bβββ} andS2 = {B∗},
i.e. it only contains requests for serverB. Then serverP sends
m

Bβββ

P = A
γγγ
βββ ⊕ B

γγγ
βββ to all the users inBβββ in Lemma 4.1, so

that all the users inS1 andS2 get the same segments as in
Maddah’s scheme. The same holds switching the roles ofA
andB.

Proof: This is a particular case of Lemma 4.1 whenααα is
empty (βββ can be empty or non-empty).

Definition 4.1: If user subsetsS1 andS2 fulfill the condi-
tions in Lemma 4.1, we call(S1, S2) an effective pair.

Our goal is to design a scheme equivalent to Maddah’s
scheme while minimizing the maximum number of messages

sent by any server. If two user subsets form an effective pair,
the corresponding messages in Maddah’s scheme (see Eq. (1))
can be replaced by a single transmission from each server.
Hence, we wish to make as many effective pairs as possible.

Lemma 4.2:The peak rate is
(

1
2 + 1

6∆
)

RC(K, t) for the
server system in Table II, where∆ represents the ratio of
unpaired messages andt = KM

N .
Proof: For each effective pair, we can use a single

transmission from each server to deliver the same information
as two transmissions in Maddah’s single server scheme. This
contributes 1

2 (1 − ∆)RC(K, t) to the total rate. Unpaired
messages are transmitted as described in section II-D, thatis
combining messages from any two out of the three servers.
Assuming that this load is balanced among all three servers,
the contribution to the total rate is23∆RC(K, t). Adding both
contributions yields the rate above.

The following lemma characterizes the ratio of unpaired user
subsets∆ in the case with symmetric requests (both servers
receive the same number of requests).

Lemma 4.3:If the requests are symmetric, then∆ = 0
whent is even and∆ ≤ 1

3 whent is odd. That is, the following
peak rate is achievable in the case with symmetric requests:

RT (K, t) =







1
2RC(K, t) if t is even

(

1
2 + 1

6∆
)

RC(K, t) if t is odd,
(6)

whereRC(K, t) is defined in Eq. (2).
Proof: A pairing algorithm with these characteristics is

presented in the Appendix.
Although ∆ can reach1

3 , in most cases the pairing algo-
rithm in the Appendix performs much better. As an example,
Table III has each segment cached byt = KM

N = 3 users
and the normalized peak rate with the pairing algorithm is
2
5 , significantly lower than the34 with Maddah’s single server
scheme.

Finally, we are ready to derive an achievable peak rate for
a general set of requests, based on the following lemma.

Lemma 4.4:If (S1, S2) form an effective pair, thenS′
1 =

{S1,Aααα} andS′
2 = {S2,Aααα} also form an effective pair of

a larger dimension. The same holds when an all-B file set is
appended instead of the all-A file setAααα.

Proof: The proof is straightforward by observing that
(S′

1, S
′
2) still fulfills the conditions in Lemma 4.1.

The extension to the asymmetric case is as follows. LetKA

andKB respectively denote the number of requests for servers
A andB, and assumeKA > KB without loss of generality.
Divide the K = KA + KB requests (or users) into two
groups: the first withKB requests for each server (symmetric
demands) and the second with the remainingKA − KB

requests for server A. We construct effective pairs of length
t+1 by appending requests from the second group to effective
pairs from the first.

Theorem 4.5:If the requests are asymmetric, the ratio of
unpaired messages is also bounded by∆ ≤ 1

3 . Specifically,
if KA and KB respectively denote the number of requests



for serversA and B, assumingKA > KB without loss of
generality, the following normalized peak rate is achievable:

R(KA,KB, t) =

t+1
∑

l=0

(

KA −KB

l

)

RT (2KB, t− l), (7)

whereRT is defined in Eq. (6) andK = KA +KB.
Proof: From Lemma 4.3,RT (2KB, t− l) represents the

peak rate after pairing all subsets oft + 1 − l requests from
the symmetric group. For eachl = 0, 1, . . . , t+1, we multiply
RT (2KB, t − l) by the number of possible completions with
l requests from the second group, to obtain the peak rate
corresponding to subsets witht+1− l requests from the first
group andl from the second. Adding them for alll gives
Eq. (7).

Since RT (i, j) ≤
(

1
2 + 1

6∆
)

RC(i, j) with ∆ ≤ 1
3

by Lemma 4.3, and
∑t+1

l=0

(

KA−KB

l

)

RC(2KB, t − l) =
RC(K, t) by combinatorial equations, Eq. (7) implies that
R(KA,KB, t) ≤

(

1
2 + 1

6∆
)

RC(K, t) with ∆ ≤ 1
3 as defined

in Lemma 4.2.
Corollary 4.5.1: A peak rate of 59RC(K, t) is achievable

for a system with two data servers and a parity server.

C. One parity andL data servers

The previous subsection has discussed the case with two
data servers and one parity server, but the same algorithm
can be extended to systems with more than two data servers.
Intuitively, if there areL data servers and one parity server,
any message can be built by combining messages from any
L servers. A first approach could be distributing the

(

K
t+1

)

messages in Maddah’s scheme across theL+1 possible groups
of L servers, as proposed in subsection II-D. Each server
would then need to send a maximum of

(

K
t+1

)

· L
L+1 messages.

However, there is a more efficient way of fulfilling the requests
based on the algorithms in subsections II-D, IV-A and IV-B.

Lemma 4.6:Let S1 = {Aααα,Bβββ ,A∗,Y} and S2 =
{Aααα,Bβββ ,B∗,Y

′} be two user subsets, whereY andY′ are
arbitrary lists of requests for serversC throughL and the
∗ represent arbitrary (possibly empty) index sets. Then,S1

and S2 can be paired so that serversA, B and P require
a single transmission to provide the same information as
messagesmS1 and mS2 in Maddah’s single server scheme.
The other data servers,C throughL, require a maximum of
two transmissions, as shown in paired transmissions in Fig.1.

Proof: The transmissions would proceed as follows:
1) ServersC throughL each send two messages, toS1

and S2. For example, serverC would sendmS1

C and
mS2

C , providing a desired segment to users requesting
files fromC and the correspondingC-segments to those
requesting other files.

2) Server A sends5 mS1

A , providing a desired segment
to users requesting{A∗,Aααα} and the corresponding
undesired A-segments to those requestingBβββ .

5It would be enough forA to sendm
{A∗,Aααα,Bβββ}

A
instead ofmS1

A
, but

we use the latter for the sake of simplicity. The same appliesto the message
from serverB.

Trans.\Req. A1 A2 B1 B2 C1 C2

(1) C5
1 C3

1 C4
1 C8

2

(2) A1
1 A2

2 A3
1

(3) B5
1 B6

1 B7
2

(4) P 5
1 P 3

1

in total A1
1, A

5
1 A2

2 B3
1 , B

6
1 B7

2 C4
1 C8

2

TABLE IV: Segments received by each users in transmissions
(1)-(4) from Lemma 4.6, whereP j

i = Aj
i ⊕Bj

i ⊕ Cj
i .

P

X

A B C D

X X X

XX X
paired transmissions:

unpaired transmissions:

X

X X

X

X

X

X

X

FIGURE 1: Pairing for 4 data servers and one parity server
system.A,B,C,D are data servers and P represents the parity
server. X means there is a message transmitted from the
corresponding server.

3) ServerB sendsmS2

B , providing a desired segment to
users requesting{Bβββ,B∗} and the corresponding unde-
sired B-segments to those requestingAααα.

4) Server P sends m
{Aααα,Bβββ}
P to users requesting

{Aααα,Bβββ}. Using the undesired segments previously
received, the users in{Aααα,Bβββ} can solve for the desired
A andB segments.

A simple comparison of the requested and received segments
shows that these transmissions deliver the same information
as messagesmS1 andmS2 in Maddah’s single server scheme.

As an example, Table IV shows the segments that each user
gets in transmissions (1)-(4) whenS1 = {A1, A2, B1, C1}
and S2 = {A1, B1, B2, C2}, respectively corresponding to
segments{A1

1, A
2
2, B

3
1 , C

4
1} and{A5

1, B
6
1 , B

7
2 , C

8
2}.

Theorem 4.7:The following normalized peak rate is achiev-
able for a system withL ≥ 3 data servers and one parity
server:

RP (K, t) =
L− 1

L
RC(K, t), (8)

whereRC is defined in Eq. (2).
Proof: First we show that we can deliver2L

(

K
t+1

)

of
the messages in Maddah’s scheme using at most1

L

(

K
t+1

)

transmissions from serversA, B andP ; and at most2L
(

K
t+1

)

transmissions from each of the other servers. This can be
done by pairing the messages as shown in Lemma 4.6, if
they include requests forA or B, and by using the scheme
in subsection IV-A, if they do not.

Selecting these2L
(

K
t+1

)

messages can be done as follows:
group messages by the number of segments that they have
from serversA or B. Within each group, we pair the messages



Server P Server Q
A1 +B1 + . . .+ L1 A1 + κBB1 + . . .+ κLL1

A2 +B2 + . . .+ L2 A2 + κBB2 + . . .+ κLL2

...
...

Ar +Br + . . .+ Lr Ar + κBBr + . . .+ κLLr

TABLE V: Files stored in parity servers in RAID-6

as shown in Lemma 4.6. This is equivalent to pairing theA
andB requests into effective pairs according to Theorem 4.5
and considering all possible completions for each pair using
requests for other servers. Theorem 4.5 showed that at least
2
3 ≥ 2

L of the messages in each group can be paired. Messages
which have noA or B segments can be transmitted as
described in section IV-A, without requiring any transmissions
from serversA, B or P .

The remainingL−2
L

(

K
t+1

)

messages can be transmitted as
described in subsection II-D, distributing the savings evenly
among serversC throughL. This requiresL−2

L

(

K
t+1

)

trans-
missions from serversA, B andP ; and L−3

L

(

K
t+1

)

from each
of the rest.

Each server then transmits a total ofL−1
L

(

K
t+1

)

, hence the
peak rate in Eq. (8).

Theorem 4.7 provides a very loose bound for the peak rate
in a system with one parity andL data servers. In practice,
there often exist alternative delivery schemes with significantly
lower rates. For example, if all the users request files from
the same server, that server should send half of the messages
while all the other servers collaborate to deliver the otherhalf.
The rate would then be reduced to half of that in Maddah’s
scheme. Similarly, ifL > t + 1 and all the servers receive
similar numbers of requests, the scheme in subsection IV-A
can provide significantly lower rates than Eq. (8).

D. Two parity and L data servers

In this section, we will extend our algorithm to a system
with L data and two linear parity servers operating in a higher
order field instead of GF(2). The parity serverP stores the
horizontal sum of all the files while the parity serverQ stores
a different linear combination of the files BY ROW, as shown
in Table V. It will be assumed that the servers form an MDS
code. We will show that with a careful design of the delivery
strategy, the peak rate can be reduced to almost half of that
with Maddah’s single server scheme.

Lemma 4.8:Let S1 = {A∗,Y} andS2 = {B∗,Y}, where
Y represents a common set of requests from any server. Then
S1 and S2 can be paired so that a single transmission from
each server fills the same requests as messagesmS1 andmS2

in Eq. (1).
Proof: The transmission scheme shares the same pairing

idea as the algorithm in subsection IV-B. The transmissions
are as follows:

1) Server A sendsmS1

A , providing a desired segment to
users requesting its files and the corresponding undesired
A-segments to others.

2) Server B sendsmS2

B , providing a desired segment to
users requesting its files and the corresponding undesired
B-segments to others.

3) ServersC,D, . . . , L each send a single message to
S1

⋂

S2 = {Y} with the following content for each
user:

• Users requesting files from server B received
some undesired segments from serverA. Servers
C,D, . . . , L send them the matching ones so that the
desired segments can be decoded using the parity in
serverP later.

• The remaining users inY will get the desired seg-
ment corresponding toS1 when possible, otherwise
they will get the undesired segment corresponding
to S2.

In other words, each serverC, . . . , L will send segments
corresponding toS1 to users requesting its files or those
from serverB, and segments corresponding toS2 to
the rest. At this point, all the users have satisfied their
requests related toS1, except those requesting files from
server B, who satisfied their requests related toS2

instead. Each user has also receivedL − 2 undesired
“matched” segments6, corresponding toS1 for those
requesting files from serverB and corresponding toS2

for the rest.
4) Finally, parity serversP andQ each transmit a message

to S1

⋂

S2 = {Y} with a combination of segments for
each user (see Table V). Those requesting files from
serverB will get two combinations of the segments
corresponding toS1, while the rest will get two com-
binations of the segments corresponding toS2. Since
each user now hasL − 2 individual segments and two
independent linear combinations of allL segments, it can
isolate the requested segment (as well all the “matching”
segments in other servers).

A simple comparison of the requested and received segments
shows that these transmissions deliver the same information
as messagesmS1 andmS2 in Maddah’s single server scheme.

As an example, Table VI shows the delivered segments
in transmissions (1)-(4) ifmS1 = {A1

1, A
2
2, B

3
1 , C

4
1 , C

5
2} and

mS2 = {A6
1, B

7
1 , B

8
2 , C

9
1 , C

10
2 }.

Theorem 4.9:For theL data server and two parity server
system, the following normalized peak rate is achievable:

RQ(K, t) =

(

1

2
+

L− 2

2L+ 4
∆

)

RC(K, t), (9)

where∆ ≤ 1
3 is the pairing loss andRC is the rate of the

single server Maddah’s scheme in Eq. (2).
Proof: Group messages by the number of segments that

they have from serversA or B. Within each group, we pair the
messages as shown in Lemma 4.8. If the number of requests

6Users inY requesting files from serversA or B receivedL−1 “matched”
segments instead ofL− 2, but we can ignore the extra one.



Trans.\Req. A1 A2 B1 B2 C1 C2

(1) A1
1 A2

2 A3
1 A4

1 A5
2

(2) B6
1 B7

1 B8
2

(3) C6
1 C3

1 C9
1 C10

2

(4) P 6
1 P 3

1 P 4
1 , Q

4
1 P 5

2 , Q
5
2

in total A1
1, A

6
1 A2

2 B3
1 , B

7
1 B8

2 C4
1 , C

9
1 C5

2 , C
10
2

TABLE VI: Segments users get in (1)-(4) transmissions (In
order to simplify notation, denoteP j

i = Aj
i + Bj

i + Cj
i and

Qj
i = Aj

i + κBB
j
i + κCC

j
i ).

from A or B is not zero, this is equivalent to pairing theA
andB requests into effective pairs according to Theorem 4.5
and considering all possible completions for each pair using
requests for other servers. Theorem 4.5 showed that at most
1
3 of the messages in each group remains unpaired. For the
messages which do not contain segments fromA or B we
repeat the same process with two other servers, with identical
results: at most13 of them remain unpaired.

Each pair of messages can be delivered using a single
transmission from each server, as shown in Lemma 4.8, hence
paired messages contribute12 (1−∆)RC(K, t) to the total rate,
where∆ denotes the ratio of unpaired messages. Unpaired
messages are transmitted as described in section II-D, thatis
usingL out of theL+2 servers. Balancing this load among all
the servers, they contributeLL+2∆RC(K, t) to the total rate.
Adding both contributions yields the rate above.

V. SCHEME 2: SMALL CACHE

This section extends the interference elimination scheme in
section II-C to a multi-server system. The interference elimina-
tion scheme is specially designed to reduce the peak rate when
the cache size is small [15]. Unlike Maddah’s scheme, which
caches plain segments, the interference elimination scheme
proposes caching linear combinations of them. That way each
segment can be cached by more users, albeit with interference.
This section will start with the system without parity in Table I,
showing that the transmission rate decreases as1

L with the
number of servers. Then it performs a similar analysis for
the case with parity servers, which can be interpreted as an
extension of the user’s caches.

Theorem 5.1:In a system withL data servers and parallel
channels, the peak rate of the interference cancelling scheme
can be reduced to1L of that in a single server system,i.e. the
following (M,R) pair is achievable:

(

t [(N − 1)t+K −N ]

K(K − 1)
,
N(K − t)

LK

)

, t = 0, 1, . . . ,K.

(10)
This holds regardless of whether each file is spread across
servers (striping) or stored as a single block in one server.

Proof: Section III showed that striping the files across
L servers reduces the peak rate of the interference cancelling
scheme by1L compared with a single server system.

In contrast to Maddah’s scheme, the interference cancelling
scheme sends the same number of segments from each file,

regardless of the users’ requests. Moreover, each message
consists of a combination of segments from a single file [15].
Therefore, the same messages can be transmitted even if
different files are stored in different servers. Each serverwill
need to transmit a fraction1L of the messages, since it will be
storing that same fraction of the files. The peak load can then
be reduced to1L of that in Eq. (4).

If there are parity servers, we can further reduce the
transmission rate by regarding them as an extension of the
users’ cache. Section II-C explained that in the interference
elimination algorithm [15], each user caches the parity symbols
resulting from encoding a set of segments with a systematic
MDS codeC(P0, P ). It is possible to pick the code in such
a way that some of these parity symbols can be found as
combinations of the information stored in serversP andQ.
Then, instead of storing them in the user’s cache, they are
discarded. Those that are needed in the delivery phase will be
transmitted by the parity servers.

For example, parity serverP stores the horizonal sum of
the files, so it can transmit messages of the form:

N/L
∑

i=1

(K−1

t−1 )
∑

j=1

λij

(

A
sj

i +B
sj

i . . .+ L
sj

i

)

,

with arbitrary coefficientsλij for any user setsj. This
corresponds to a linear combination of all the segments in
Eq. (3). Similarly, parity serverQ can transmit some other
linear combinations of the segments which can also work as
components of an MDS code. This effectively increases the
size of the cache memories byM ′ file units, corresponding to
the amount of information that the parity servers can affordto
send each user during the delivery phase.

Theorem 5.2:If there areη parity servers andK ≥ N , the
following (M,R) pairs are achievable fort = 0, 1, . . . ,K

(

t [(N − 1)t+K −N ]

K(K − 1)
− η

N(K − t)

LK2
,
N(K − t)

LK

)

.

Proof: The information sent by the parity server is
bounded by the peak rate of the data servers,i.e. N(K−t)

LK
according to Eq. (10). Assuming a worst case scenario, each
transmission from a parity server will benefit a single user.
Therefore, each parity server can effectively increase thecache
of each user byM ′ = N(K−t)

LK2 .
This memory sharing strategy provides significant improve-

ment when the cache capacity is small. Fig. 2 shows the
performance forK = 15 users andN = 12 files stored in
L = 4 data servers. When the cache size is small, the peak
rate of the system with two parity servers is much lower than
that without parity servers. As the cache grows the advantage
of the system with parity servers becomes less clear.

The interference elimination scheme is specially designed
for the case with less files than users (N ≤ K) in the single
server system. However, since the peak load is reduced by1

L
in a multi-server system, the interference elimination scheme
might also have good performance whenN > K if L is large.
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FIGURE 2: Comparison of the performance between multi-
server system without parity servers and the system with two
parity servers.

server system Normalized peak rate
single server RC(K, t) =

(

K

t+1

)

/
(

K

t

)

L data1 parity L−1
L

RC(K, t)

L data2 parity ( 1
2
+ L−2

2L+4
∆)RC(K, t) (∆ ≤ 1

3
)

TABLE VII: Normalized peak rate of Scheme 1.

In order to apply the algorithm, we can just addN−K dummy
users with arbitrary requests. Then, we have the following
corollary from Theorem 5.2:

Corollary 5.2.1: If there areη parity servers andK ≤ N ,
the following (M,R) pairs are achievable:

(

t2

N
− η

(N − t)

LN
,
(N − t)

L

)

, t = 0, 1, . . . , N.

VI. SIMULATIONS

This section compares all the schemes studied in this paper,
for a system withN = 20 files stored inL = 4 data
servers with5 files each. We show that striping has better
performance than the schemes in sections IV and V (Scheme 1
and Scheme 2, respectively) at the cost of network flexibility.
If each file is stored as a single block in one server, Scheme 2
has better performance when the cache capacity is small while
Scheme 1 is more suitable for the case where the cache
capacity is large. The performances of Scheme 1 and Scheme 2
are summarized in Table VII and Table VIII, respectively.

Fig. 3 and Fig. 4 focus on the case with one and two
parity servers, respectively. We assume that there areK = 15
users, thus there are more files than users, with varying
cache capacity. We observe that striping provides lower peak
rates than storing whole files, as expected. Additionally, since
N > K, the interference elimination scheme always has worse
performance than Maddah’s scheme when striping is used.

server system Normalized (M,R)

single server
(

t[(N−1)t+K−N]
K(K−1)

,
N(K−t)

K

)

L dataη parity (K ≥ N )
(

t[(N−1)t+K−N]
K(K−1)

− η
N(K−t)

LK2 ,
N(K−t)

LK

)

L dataη parity (K ≤ N )
(

t2

N
− η (N−t)

LN
, (N−t)

L

)

TABLE VIII: Normalized (M,R) pair of Scheme 2. (η is the
number of parity servers.)
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FIGURE 3: Comparison between the performance between
Scheme 1 and Scheme 2 in one parity server system when
N = 20 andK = 15.

Without striping, Scheme 2 provides lower peak rate than
Scheme 1 when the cache capacity is small, and it is the other
way around when the capacity is large.

Then Fig. 5 and Fig. 6 compare the performance between
Scheme 1 and Scheme 2 when there are more users(K = 60)
than files for the one or two parity case, respectively. As shown
in Fig. 5 and Fig. 6, the striping has lower rate than storing
whole files and when the cache capacity is very small, the
striping interference elimination has better performancethan
striping Maddah’s scheme. For Scheme 1 and Scheme 2, when
the cache capacity is small, Scheme 2 provides lower peak rate,
while when the cache capacity increases, Scheme 1 has better
performance. Moreover, we notice that the curves intersectat
a point with largerM than they did in Fig. 3 and Fig. 4, which
means that we are more prone to utilize Scheme 2 when there
are more users than files.

VII. C ONCLUSION

This paper proposes coded caching algorithms for reducing
the peak data rate in multi-server systems with distributed
storage and different levels of redundancy. It shows that, by
striping each file across multiple servers, the peak rate can
be reduced proportionally to the number of servers. Then it
addresses the case where each file is stored as a single block
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FIGURE 4: Comparison between the performance between
Scheme 1 and Scheme 2 in two parity server system when
N = 20 andK = 15.
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FIGURE 5: Comparison between the performance between
scheme 1 and scheme 2 in one parity server system when
N = 20 andK = 60.
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FIGURE 6: Comparison between the performance between
scheme 1 and scheme 2 in two parity server system when
N = 20 andK = 60.

in one server and proposes different caching and delivery
schemes depending on the size of the cache memories.

Distributed storage systems generally use MDS codes across
the servers to protect the information against node failures.
The coded caching schemes proposed in this paper are able
to leverage that redundancy in creative ways to reduce the
achievable traffic peak rate. The results for Scheme 1 and
Scheme 2 are shown in Table VII and Table VIII respectively.

In the future, we will study how this process can be
generalized to other erasure codes, such as fractional repetition
codes [21][22] or other RAID-6 [25] structures. We also plan
to generalize our schemes to the case where files have different
popularity, which will require designing erasure codes with
different levels of protection for different files.

APPENDIX

In this appendix, we will elaborate on the pairing scheme
in Lemma 4.3 from Section IV-B , specially for the case with
evenK and symmetric requests.

Definition A.1: Let χA denote a set of messages (or, equiv-
alently, subsets oft + 1 users) to be sent by server A and
χB denote a set of messages to be sent by server B. If there
is an injective function providing each element inχA with
an effective pair inχB, we say that there is asaturating
matching for χA.

In order to reduce the peak rate we want to separate all
the messages to be transmitted (equivalently, subsets oft+ 1
users) into two groupsχA andχB such that there are as many
effective pairs as possible, as we shall see.

To better illustrate the allocation scheme, the problem of
finding effective pairs is mapped to a graph problem. Let G be
a finite bipartite graph with bipartite setsχA andχB, where



each message (or user subset) is represented as a vertex in
the graph and edges connect effective pairs fromχA andχB.
The idea of our design is to allocate as many messages as
possible toχA, while guaranteeing the existence of a saturating
matching forχA based on Hall’s marriage Theorem [26].

Theorem A.1:(Hall’s MarriageTheorem[26]) Let G be a
finite bipartite graph with bipartite setsχA andχB. For a set
u of vertices inχA, let NG(u) denote its neighbourhood in
G, i.e. the set of all vertices inχB adjacent to some element
of u. There is a matching that entirely coversχA if and only
if

|u| ≤ |NG(u)|

for every subsetu of χA.
Corollary A.1.1: If all vertices inχA have the same degree

dA and all the vertices inχB have the same degreedB (dA ≥
dB), then there is a saturating matching forχA.

Proof: For anyu ⊆ χA, all edges connected tou are
also connected toNG(u), hence|NG(u)| · dB ≥ |u| · dA.
SincedA ≥ dB , we know that|u| ≤ |NG(u)|. According to
Theorem A.1, there is a saturating matching forχA.

In order to compute the peak rate in the worst case, we
assume that allK users request different files. Since each
subset containst+1 files, there are

(

K
t+1

)

messages to allocate
betweenχA andχB. We classify these subsets according to
the number of requests from server A: sets oftypew will have
w requests from server A andt + 1 − w from server B. The
following proposition states that the messages of the same type
are not able to pair with each other.

Whent is even and the demands are symmetric,typew sets
andtype t+ 1− w sets form a symmetric bipartite graph, so
there exists a saturating matching according to Corollary A.1.1.
Whent is odd,type(t+ 1)/2 sets are paired with the union of
type (t− 1)/2 sets andtype (t+ 3)/2 sets. Since the vertices
in type (t− 1)/2 sets andtype (t+ 3)/2 sets are connected
to the same number of vertices intype (t+ 1)/2 sets, this
bipartite graph also fulfills the condition in Corollary A.1.1.
Other sets are paired as in the case witht even, that is,type
w sets are paired withtype t+ 1− w sets. These pairings are
illustrated in Fig.7.

When t is even, there is a matching for every candidate
file set, thus the peak rate is cut by half compared with the
traditional single server scheme. Whent is odd, some vertices
of types (t − 1)/2, (t + 1)/2, or (t + 3)/2 could fail to be
paired. Denote the ratio of unpaired messages whent is odd by
∆. Any two servers can collaborate to fulfill those requests, so
the normalized overall peak rateRT with symmetric demands
is given by:

RT (K, t) =







1
2RC(K, t) if t is even

(

1
2 + 1

6∆
)

RC(K, t) if t is odd,

The pairing loss∆ is limited. The worst case occurs when
there is a big difference between the number of vertices of
type (t+ 1)/2 and the number of vertices of types(t− 1)/2

w

t is even
(a)

w

t is odd
(b)

FIGURE 7: Pairing illustration.w is the number of files from
serverA in a message.

or (t+ 3)/2. In both cases, the pairing loss∆ is bounded by
1
3 .
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