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Abstract—This paper aims to provide an information theoret-
ical analysis of massive device connectivity scenario in which a
large number of devices with sporadic traffic communicate in the
uplink to a base-station (BS). In each coherence time interval, the
BS needs to identify the active devices, to estimate their channels,
and to decode the transmitted messages from the devices. This
paper first derives an information theoretic upper bound on the
overall transmission rate. We then provide a degree-of-freedom
(DoF) analysis that illustrates the cost of device identification
for massive connectivity. We show that the optimal number of
active devices is strictly less than half of the coherence time slots,
and the achievable DoF decreases linearly with the number of
active devices when it exceeds the number of receive antennas.
This paper further presents a two-phase practical framework in
which device identification and channel estimation are performed
jointly using compressed sensing techniques in the first phase,
with data transmission taking place in the second phase. We
outline the opportunities in utilizing compressed sensing results
to analyze the performance of the overall framework and to
optimize the system parameters.

I. INTRODUCTION

Massive connectivity is envisioned to be a key requirement
for future cellular networks, in which millions of devices
are expected to be connected to the cellular network while
performing machine-centric functions such as environment
sensing, event detection, surveillance, and control. Differing
from the human-centric traffic dominating the wireless cellular
Internet of today, these future machine-type communications
have the following key features:

• Large Number of Devices: The number of devices con-
nected to each cellular base-station (BS) can potentially
be in the order of 105 − 106. Thus, significant network
resources need to be devoted to identify and to keep track
of these potentially active connections.

• Sporadic Traffic: Most devices engaged in machine-type
communications do not transmit data constantly. Sensors
may report observations periodically, or in response to
emerging events. At any given time, only a small subset
of potential devices have data to transmit.

• Low-Latency: Machine-type traffic is typically delay sen-
sitive, especially for sensing and control applications. The
required latency can be in the millisecond range.

It is apparent that the traffic pattern for mass connectivity is
very different from the video dominated cellular traffic for
which today’s network is designed. Specifically, the current
cellular system can only support a small number of devices.
Further, scheduling overhead alone in today’s network can

already overwhelm the latency budget for machine commu-
nications.

The paper aims to provide a framework for communication
protocol design for massive connectivity. We adopt a system
design in which a massive number of connected devices
can be connected in an expeditious fashion to the BS by
taking advantage of the sparsity in the activity pattern for
device communications and by utilizing compressed sensing
techniques for active device detection. The main objective of
the paper is to reveal the information theoretical limit of such
a system by presenting a degree-of-freedom (DoF) analysis.
This paper is primarily focused on the uplink, where the
major challenge is that of uncoordinated user transmission and
activity pattern. The downlink counterpart can be designed
using more conventional techniques.

The notation used in the paper is as follows. Lower case
letters, e.g, x, are used to denote scalars. Lower case bold-
faced letters, e.g., x, are used to denote vectors. Upper case
bold-faced letters, e.g., X, are used to denote matrices. Matrix
transpose is denoted as (·)τ and conjugate transpose as (·)†.

II. DEVICE COMMUNICATION FRAMEWORK

Consider a cellular network designed to allow a large
number of devices with sporadic traffic to communicate with
the BS. We consider a single cell in which the BS is
equipped with M antennas and the devices are equipped with
a single antenna each. The channels between the BS and the
devices are modeled as flat-fading channel with a distance
dependent pathloss component, a shadowing component, and
a fast-fading component, uncorrelated across the antennas. We
further assume a block-fading model (which can be in either
time or frequency), where the channel stays constant for a
duration of T slots. (Note that if T is in the time domain,
we can also interpret T as the latency constraint in delay
limited communication.) In this case, the overall channel can
be written as

y(i) =

N∑
n=1

hnxn(i) + z(i), i = 1, · · · , T, (1)

where i is the time index, n is the device index, and N is the
total number of potential devices in the pool, among which K
are assumed to be active at any given time. Here, y(i) ∈ CM
is the received signal across the M BS antennas in the ith
time slot, z(i) ∈ CM is the background noise assumed to be
additive white Gaussian, hn ∈ CM is the vector channel from
the nth device to the M receive antennas at the BS assumed



to be a constant over the coherence time of T time slots, and
xn(i) ∈ C is the transmit signal by the nth device in the ith
time slot. Thus, the vector x(i) = [x1(i) · · ·xN (i)]τ ∈ CN is
sparse.

In matrix form, we can define Y = [y(1) · · ·y(T )] ∈
CM×T , H = [h1 · · ·hN ] ∈ CM×N , and X =
[x(1) · · ·x(T )] ∈ CN×T . Further, since only a subset of the
total of N potential devices are active, we use a diagonal
matrix A ∈ RN×N to denote user activity, in which the ith
diagonal of A is 1 if and only if the device i is active, and
zero otherwise. Then, the overall channel model becomes

Y = HAX + Z (2)

where the combined matrix AX is row sparse.
The conventional cellular networks design, in which each

device is scheduled on a specific time-frequency tone, is not
the most suitable for massive device communication, because
not all devices have data to transmit all the time. This paper
advocates a contention-based system, in which each device
is assigned a signature sequence. The devices contend for
the channel whenever they have data to communicate. The
BS detects the activity pattern of the devices first, then
subsequently the data.

Contention-based system has two key advantages. First,
it can accommodate variable system load. Second, it avoids
the latency associated with scheduling overhead. However,
a contention-based system must also address the issue of
how the active devices are identified and subsequently how
data communications take place. We address these two issues
separately below.

A. Phase I: Device Identification

To allow multiple devices to access a common channel, we
must assign a signature sequence to each device n and use
a device identification phase to identify the devices based on
these pilot sequences. Let the length of these pilot sequences
be L, where L < T . Denote the pilot sequence for device
n as sn = [sn(1) · · · sn(L)]τ ∈ CL. This paper assumes
a simplified model in which time is slotted and the devices
are synchronized so that all the active devices transmit their
respective pilots at the beginning of the slot simultaneously.

The first phase of the proposed framework consists of the
joint detection of active users and the estimation of their
channels. Let S = [s1 · · · sN ] be the matrix of pilot signatures
for devices 1 to N , the transmit signal over slots 1 to L is
now X1:L = Sτ , and the overall channel model becomes:

Y1:L = HASτ + Z1:L, (3)

where the subscript (·)1:L denote the first L columns of the
matrix. It is instructive to rewrite the above as

Yτ
1:L = S(HA)τ + Zτ1:L. (4)

Observe that S is a known matrix and (HA)τ is row sparse,
so that the problem of jointly detecting the sparse user activity
pattern A and estimating the channel matrix H is now a
compressed sensing problem. For example, in the case where

the BS is equipped with a single antenna, the problem amounts
to detecting the non-zero pattern in the vector of channel
values below:

y(1)
y(2)

...
y(L)

 =

 | | |
s1 s2 · · · sN
| | |




h1
h2
...
...
hN

+


z(1)
z(2)

...
z(L)


(5)

This is known as the single-measurement compressed sensing
problem. When the BS is equipped with multiple antennas,
each of the yi and hi and zi above becomes a vector of size
M . The resulting problem becomes that of detecting the sparse
set of non-zero rows in the channel matrix Hτ below:

yτ (1)
yτ (2)

...
yτ (L)

 =

 | | |
s1 s2 · · · sN
| | |




hτ1
hτ2
...
...

hτN

+


zτ (1)
zτ (2)

...
zτ (L)


(6)

This matrix version of the problem is known as the multiple-
measurement compressed sensing problem.

To summarize, the joint user activity detection and channel
estimation problem can now be stated simply as the estimation
of non-zero rows in the row-sparse matrix Hτ based on the
measurement matrix Yτ

1:L in (6). Since we assume that only
K out of N devices are active, we can proceed to use sparse
optimization technique to identify the non-zero rows.

B. Phase II: Device Communication

Assuming successful identification of the devices, the sec-
ond phase consists of data transmission. This phase is a
conventional multiple-access channel with some fixed number
of transmitters and a single receiver as modeled in (1), or in
matrix form as:

YL+1:T = HAXL+1:T + ZL+1:T , (7)

for which the characterization of capacity region is well
established. This paper will mostly focus on the achievable
sum rate R.

As mentioned earlier, latency is a key requirement for device
communication scenario of interest. Phase I and phase II
transmissions combined must be completed within T slots.
Thus, there is a tradeoff between the L time slots used in
device identification and channel estimation versus the T −L
slots used for data transmission.

We note that there are two possible system implementations
of this phase, depending on the latency and rate requirements.
First, the BS can schedule the successfully identified users
to the time-frequency resource blocks for transmission. The
transmit signals from different users can be assured to be
orthogonal. However, to perform scheduling, the BS must
inform the users that they are correctly identified. Further, the



BS must provide the index of the time-frequency resources to
the users. This not only puts certain capacity requirement on
the downlink channel, but also causes considerable additional
delay, although in general this scheduling approach is more
spectrally efficient.

Alternatively, for delay-sensitive traffic, we can engineer the
system so that the BS rarely makes an identification error, and
the devices can transmit data immediately after the pilot se-
quence. In this case, device can transmit using spread spectrum
schemes such as code-division multiple-access (CDMA). For
this scheme to work, accurate identification of active devices
is essential.

C. Problem Statement

The central questions this paper aims to answer are the
following. Suppose that we have a latency constrained mas-
sive device communication scenario with latency or channel
coherence constraint T . What is the fundamental limit in term
of how many active devices K can be accommodated in the
pool of potential devices N , and what is the maximum data
rate R they can transmit?

Related to the above is the question of whether the two-
phase transmission strategy involving a device detection and
channel estimation stage followed by data transmission stage
can achieve the fundamental limit above. If so, what is the
optimal division between device/channel estimation stage L
and transmission stage T − L? Finally, what are the practical
algorithms for device detection and for data communication
that achieves the optimal tradeoff between (N,K,R)?

D. Related Work

Massive devices detection and communications have been
studied previously by several groups of researchers. In the 5G
context, [1]–[3] propose compressed sensing based algorithms
for joint device detection and data transmission. Compressed
sensing approach has also been taken by [4]–[6], and [7],
[8] for device detection problems. An earlier work exploiting
sparsity in user activities is [9]. More recently, user detection
and channel estimation are considered in [10], [11]. The
approach taken in this paper is similar to these earlier lines
of work. The emphasis here is on information theoretical
upper bound and the resulting DoF analysis, which shed light
on the optimized operating parameters at the system level.
The information theoretical approach taken in this paper is
related to the work of [12], [13] that studies the capacity of
the multiuser channels in the limit of large number of users,
although these works assume perfect channel knowledge while
the present paper also accounts for channel estimation cost.

III. FUNDAMENTAL LIMITS

A. Capacity Upper Bound

One of the main goals of this paper is to investigate the in-
formation theoretical limit of the tradeoff between (N,K,R).
Toward this end, we derive the following upper bound on the
achievable sum rate of the massive device connectivity.

Proposition 1. Consider a massive device communications
scenario with N potential devices, out of which K are active,
communicating to a BS in the uplink. The BS detects the active
devices and also decodes the messages from the active devices.
Let the overall communication channel be modelled as Y =
HAX+Z as in (2) with fixed distributions for H, A, X, and
Z. Then the achievable sum rate of data transmission across
all the users is approximately bounded by

R . I(X; Y|HA)−H(A)− I(HA; Y|X). (8)

Proof. (Sketch) Expand the mutual information I(HA,X; Y)
as follows:

I(HA,X; Y) = I(X; Y) + I(HA; Y|X) (9)
= I(HA; Y) + I(X; Y|HA) (10)

We argue that the I(HA; Y) term is negligible, because it
corresponds to the information transmission from the channel
coefficients while not knowing X. As X changes from symbol
to symbol while HA is fixed within the coherence time
T , this term must be small. A detailed evaluation requires
expansion of I(HA; Y) = h(Y) − h(Y|HA) according to
their respective statistical distribution. For the rest of this
paper, we ignore this term.

Assuming the above, the overall information transfer from
the input of the channel X to the output Y is bounded by

I(X; Y) . I(X; Y|HA)− I(HA; Y|X). (11)

Now, from the receiver’s perspective, the overall information
transfer consists of the sum data rate transmitted by the users,
plus the information contained in the user activity pattern.
Thus, we have:

R+H(A) ≤ I(X; Y). (12)

Note that this bound is similar to a result contained in [12].
Combining the two inequalities above, we arrive at (8).

The outer bound in Theorem 1 has very intuitive interpre-
tations. The data transmission rate from the user devices to
the BS is bounded by the data rate if the channel and activity
patterns are known (the I(X; Y|HA) term), subtracting from
which the information contained in activity pattern (the H(A)
term) together with the cost of estimating the channels of the
active users (the I(HA; Y|X) term).

The outer bound clearly illustrates the crucial roles of user
activity detection and channel estimation. For example, if a
random set of K users can be active among the N potential
users at any given time, the information contained in user
activity pattern can be seen as:

H(A) = Nh(p) ≈ log

(
N
K

)
, (13)

where h(·) is the binary entropy function, and p = K/N is
the user activity probability. When N is large, this term can be
comparable to the user data transmission rate and cannot be
ignored. Likewise, the need for channel estimation is clearly
illustrated in the term I(HA; Y|X). The impact of the two
terms together can be clearly seen in a DoF analysis.



B. Degree-of-Freedom Analysis

This section asks the question of how the user data rate
scales with the signal-to-noise ratio (SNR) and the number
of devices by providing a DoF analysis for the massive
connectivity scenario. The analysis is modeled in a similar
fashion as in traditional MIMO channel [14], [15], but with
the crucial difference of accounting for user activity detection.
In particular, in traditional MIMO channels, the number of
active users is typically smaller than the number of receiver
antennas. But in massive connectivity application, we also
need to consider the possibility of having a large number of
devices as well. We present the analysis for two separate cases
below.

1) Case K ≥ M : In the massive connectivity scenario,
there can be a large number of active users in the system.
Thus, we can have K ≥ M . In this case, over a coherence
block of T time slots, the data rate assuming known channel
scales with SNR as:

I(X; Y|HA) ≈MT log(snr). (14)

However, channel estimation incurs considerable cost. As there
are a total of KM channel entries to estimate, the scaling of
the channel estimation term can be up to:

I(HA; Y|X) ≈ KM log(snr). (15)

Thus, as in a conclusion already reached in [15], for the
overall data rate R to scale with SNR with non-zero DoF,
we must at least have K < T . The channel estimation cost
already puts restriction on the number of active devices that
can be accommodated, while being able to communicate with
significant data rate at the same time.

In the scenario in which the active devices need to be
detected among a large set of potential users, there is further
restriction on K in order to ensure non-zero DoF. Consider a
system in which the number of active devices K, the number
of receive antennas M and the coherence time T are fixed,
but the number of potential users N is large. The large-system
asymptotic analysis below reveals that K must be bounded by
a fraction of T in order for the overall data rate to scale with
SNR.

Lemma 1. Consider a massive device communications sce-
nario with K active users among N potential single-antenna
users, communicating to a BS with M receive antennas over
coherence time interval T . Let K, M , T be fixed. Assume
K ≥ M , but let N and SNR go to infinity as N ≈ (snr)η .
The achievable sum rate scaling across all the users over T
time slots is asymptotically bounded by

R ≤ (MT −Kη −KM)
+

log(snr), (16)

where (·)+ denote the positive part of a number. In particular,
the DoF for the overall sum rate is non-zero only if

K <

(
M

M + η

)
T. (17)

Proof. We use the outer bound (8) in Theorem 1. Evaluate the
asymptotic scaling of H(A) as follows:

H(A) = N(−p log p− (1− p) log(1− p))
≤ K log(N/K)

≤ Kη log(snr) (18)

Combining with (14) and (15), we get the DoF result (21). It
is easy to see that the DoF is non-zero only if K is bounded
as in (17).

The above result implies that when there are uncoordinated
massive number of devices transmitting simultaneously, they
can easily overwhelm the number of receive dimensions, de-
fined by the coherence time T , to render high-rate transmission
impossible. This result is the counterpart of the result by
Lozano, Heath, and Andrews [15], which shows that for the
usual multiple-access channel with known user activity, the
DoF vanishes if K ≥ T . The result of this paper shows that
when user activities are unknown and need to be detected,
then a further factor η, related to the total number of potential
devices, needs to be accounted for.

2) Case K < M : The conclusion above motivates us
to also consider the case where K is smaller, either by
engineering the device network to allow only a small number
of simultaneous transmissions at a time, or to implement
receiver with massive MIMO, so that M � K. In this case,
the relevant mutual information expressions become

I(X; Y|HA) ≈ KT log(snr) (19)

and
I(HA; Y|X) ≈ K2 log(snr), (20)

where the latter is due to the fact that the transmit signal is
rank K, so the effective receive signal dimension is only K,
despite having M antennas at the receiver. In other words, it is
not necessary to estimate KM channel elements; the number
of effective channel coefficients is only K2. This allows us to
characterize the DoF upper bound as follows:

Lemma 2. Consider a scenario with K active users among
N potential single-antenna users, communicating to a BS with
M receive antennas over coherence time interval T . Let K,
M , T be fixed. Assume K < M , and let N and SNR go to
infinity as N ≈ (snr)η . The achievable sum rate scaling across
all the users over T slots is asymptotically bounded by

R ≤
(
KT −Kη −K2

)+
log(snr). (21)

Proof. The result follows directly from (19), (20), (18) and
the outer bound (8).

We now summarize the DoF outer bound results of this
section by stating the following theorem.

Proposition 2. Consider a massive device communications
scenario with K active users among N potential single-
antenna users, communicating to a BS with M receive an-
tennas over coherence time interval T . If K, M , T are fixed,



and N and SNR go to infinity as N ≈ (snr)η , then a DoF
outer bound on the sum rate over all users, on a per time slot
basis, is:

DoF ≤


(

1− K(M+η)
TM

)+
M if K ≥M,(

1− K+η
T

)+
K if K < M.

(22)

Further, if K can be optimized, then the above DoF outer
bound is maximized when

K∗ = min

{
M,

⌊
T − η

2

⌋+}
, (23)

in which case the DoF upper bound per time slot is(
1− K∗+η

T

)+
K∗.

It is instructive to compare the above result with the DoF
characterization of conventional noncoherent MIMO system
by Zheng and Tse [14], which states that for a MIMO channel
with K transmit antennas, M receive antennas, and channel
coherence time T , we should use K∗ = min{K,M, T/2}
transmit antennas to achieve a maximum overall DoF of
(1 −K∗/T )K∗. It is clear that the result of this paper is an
analogous analysis with the key difference of accounting for
the effect of device identification. Massive device identification
brings a cost to the overall DoF bound; it also reduces the
optimal number of transmit antennas.

In [15], the practical value of T for a typical cellular
network is calculated to be in the order of 104 for Doppler
value corresponding to pedestrian speed. For devices that are
stationary, the value of coherence time T can be even larger,
making the accommodation of simultaneous transmission by
thousands of devices per cell a feasible goal, especially when
device transmission can be coordinated so that the number of
simultaneous transmitting devices at any given time is no more
than the number of receive antennas.

However, for systems where coherence time is limited and
with uncoordinated transmission across massive number of
devices, controlling the number of simultaneous transmissions
is not always possible. The result of this paper shows that
there are achievable data rate implication for such uncoordi-
nated massive device communications. When the number of
simultaneous transmissions goes beyond the number of receive
antennas, the system DoF starts to decrease linearly with the
number of active devices. When the number of active devices
is almost at the coherence time, the achievable DoF becomes
zero, making high-rate transmission effectively impossible.

IV. ACHIEVABLE RATES

The information theoretical analysis of the previous section
provides an outer bound for the data rate across all the
users in a massive connectivity scenario. The outer bound
can be evaluated numerically for comparison with practically
achievable rates. This section aims to present the achievable
rates of the device communication framework proposed in this
paper for comparison with the outer bound.

A. DoF Comparison

Fixing the latency or channel coherence constraint T , the
proposed achievable scheme uses L timeslots for device iden-
tification, and T − L slots for data transmission. Assuming
that K out of N devices are active at any given time, we
must choose L sufficiently large so that K devices can be
detected with negligible probability of error and their channels
are estimated accurately in the first phase. Subsequently, the
second phase of T −L time slots then provides the following
achievable data rate

R = (T − L) log |HAΣXAH† + I|, (24)

where ΣX is a N ×N transmit covariance matrix across all
the devices. With independent transmission with fixed power
P for each device, ΣX is just a diagonal matrix with diagonal
value P in entries corresponding to the active devices.

The above rate expression scales as

R ≈ min{M,K}
(

1− L

T

)
T log(snr). (25)

Comparing the achievable DoF in (25) with the DoF upper
bound (22), we see that the bounds match if the following
choices of L = K

(
1 + η

M

)
for the K ≥ M case and L =

K + η for the K < M case are sufficient for device detection
and channel estimation. In particular, the outer bound indicates
that if L can be made to scale linearly with K, then we would
have been able to achieve the largest possible DoF.

Interestingly, the information theoretical analysis of com-
pressed sensing indeed suggests that the linear scaling with
K is all that is needed for sparse recovery (in the M = 1
case), i.e., L = O(K) is sufficient under suitable conditions
[16]–[19]. However, the existing results in literature are often
asymptotic in somewhat different regimes and are not directly
comparable to the DoF outer bound derived earlier. For exam-
ple, the fundamental result of compressed sensing [20], [21]
states that if the sensing matrix satisfies a restricted isometry
(RIP) property, then L = O(K log(N/K)) suffices for sparse
recovery, but results of this type apply only at high SNR. The
scaling of the required L as function of SNR is typically not
known. Further, results for the M > 1 cases are harder to
obtain. The important question of the impact of the channel
estimation error also have not yet been fully explored.

The computational complexity of the detection algorithm is
another important question. Broadly speaking, there are three
classes of algorithms of practical interests classified according
to complexity: convex optimization based algorithms intended
to solve a convex relaxation of the sparse recovery algorithm
(e.g., [20]–[23]), combinatorial optimization based algorithms
(e.g., [24]; see [25] and references therein), and iterative
decoding algorithms based on message passing [26]–[29]. For
large-scale sparse recovery problems, iterative decoding based
algorithms are the only feasible ones, as the complexity of
convex optimization or combinatorial optimization becomes
prohibitive when the problem size is large.

Of particular interest is a class of algorithms known as
approximate message passing (AMP) [26], which represents a



complexity-performance tradeoff attractive to communications
applications. The AMP algorithm for compressed sensing has
been extensively studied in the literature. A key advantage of
AMP is that it admits an analysis based on state evolution
that allows an accurate prediction of successful recovery as
function of problem parameters [30], [31]. Further, as shown
in [27], the noise-sensitivity phase transition of AMP in fact
coincides with that of convex optimization approach. We
mention here our recent work applying the AMP algorithm
to the massive device detection problem [32], [33].

Finally, we remark that the discussions in this paper are
predicated on the standard assumptions in compressed sensing
with random sensing matrices, typically chosen from some
i.i.d. distribution (e.g., Gaussian). There is additional space
for designing the sensing matrix, for example, by choosing
the sensing matrices to be sparse.

V. CONCLUSION

Massive device connectivity presents a new set of challenges
and opportunities for communication engineering. This paper
provides a framework for the design and analysis of massively
connected device network. The main contributions of this
paper include an information theoretical upper bound on
the transmission rate of the massive device network and a
corresponding DoF analysis. Further, this paper presents a
two-phase scheme, with joint device identification and channel
estimation in the first phase followed by data transmission in
the second phase, as a possible way of engineering such a
system.
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