
Distributed Storage Meets Secret Sharing on the
Blockchain

Ravi Kiran Raman and Lav R. Varshney
University of Illinois at Urbana-Champaign

Abstract—Blockchain systems establish a cryptographically
secure data structure for storing data in the form of a hash
chain. We use a novel combination of distributed storage, private
key encryption, and Shamirs secret sharing scheme to distribute
transaction data, without significant loss in data integrity. Addi-
tionally, using Shamirs secret sharing scheme on the hash values
and dynamic zone allocation, we further enhance the integrity.
We highlight the tradeoff in storage cost and data loss probability
with varying zone size choices. We also study the tradeoff between
recovery cost and security from adversarial corruption with
varying recovery mechanisms. Then, we formulate code design,
given a probability of data recovery and targeted corruption,
as an integer program. Using the coding scheme we establish a
mechanism to insure data, for instance in blockchain-based cloud
storage systems, based on the value of the data, by understanding
the costs involved for the service provider.

I. INTRODUCTION

The invention of bitcoin almost a decade ago brought
blockchains into prominence in the business world.
Blockchains maintain a shared version of a transaction
ledger with each peer in the network storing a copy reducing
the friction in financial networks caused by intermediaries
using different technology infrastructures. The technology
has created a new environment of business transactions and
self-regulated cryptocurrencies [1], [2].

Owing to their favorable properties, blockchains are be-
ing adopted extensively outside cryptocurrencies in a vari-
ety of novel application domains such as medicine, supply
chain management, global trade, and government services
[3]. Blockchains are expected to revolutionize the way fi-
nancial/business transactions are done, such as through smart
contracts [4], [5]. More recently, cloud storage systems such
as STORJ and SIA have been designed using blockchain,
offering heightened security guarantees and a new approach
to decentralized storage.

However, blockchain works on the premise that every peer
stores the entire transaction ledger as a hash chain, even though
the data is meaningless to peers that are not party to the
transaction. Consequently, individual nodes incur a significant,
ever-increasing storage cost [6]. Note that secure storage
may be much more costly than raw hard drives, e.g. due to
infrastructure and staffing costs. With storage costs expected
to saturate due to the ending of Moore’s Law, storage is a
pressing concern for the large-scale adoption of blockchain.

This work was supported in part by the IBM-Illinois Center for Cognitive
Computing Systems Research (C3SR), a research collaboration as part of the
IBM AI Horizons Network.

This impending end to Moore’s law also results in a satu-
ration of computational speeds. Notwithstanding new efforts
[7], block validation (mining) in bitcoin-like networks involves
an expensive hash computation stage that requires high-end
hardware and much energy. Recent studies have estimated
that global energy consumption of bitcoin is of the order of
700MW [8] – enough to power over 325,000 homes, and over
5000 times the energy per transaction on a credit card.

Distributed storage has been considered in the past as
information dispersal algorithms (IDA) [9] and as distributed
storage codes [10]. In particular [11] considers an IDA secure
from adaptive adversaries. Secure distributed storage codes
to protect against colluding eavesdroppers [12] and active
adversaries [13] have also been studied. Since we consider
data confidentiality and integrity under active adversaries, we
use a different approach to distribute the data.

To address rising storage costs and increasing transaction
volumes [14], we proposed secure, distributed storage [15].
We also showed that by removing constraints on hash values,
mining can be made energy efficient without loss in security.
Our past work invoked a combination of distributed storage
codes [10], private key encryption, and secret key sharing [16],
inspired by [17], to distribute data among peers.

The construction of such a code results in tradeoffs not
only between storage and recovery costs, but also among
the associated integrity and confidentiality guarantees of the
system. This work aims to build on the earlier work to
explicitly study blockchain systems that are primarily used
for archival storage of data. In Sec. III, by decoupling the
distributed storage of transaction data from the dynamic zone
allocation and secure storage of hash values, we enable the
service provider or client to select the coding parameters based
on the data and the security guarantees required.

In Sec. IV, we study the effects of denial of service and
targeted corruptions on data loss and compute the probabilities
of such corruptions. We also study the confidentiality of the
data stored by the system, determining the minimum extent of
collusion under which a data leak is feasible. We elaborate
how the storage and recovery costs depend on the coding
parameters as selected in Sec. III-A and III-B respectively.

Having established these tradeoffs, we first consider a model
cloud storage system in Sec. V. For given integrity and security
guarantees, we establish the code parameter selection as an
integer program that minimizes the cost of storage. At the
other end, we consider the idea of data insurance [18]. Given
a profit margin desired by the service provider, we formulate

the code design problem as an integer program minimizing
service cost subject to that profit margin.

II. SYSTEM MODEL

We now abstract blockchain systems through a mathemati-
cal model for the peer network and hash chain.

A. Ledger Construction

Blockchain comprises a connected peer-to-peer network of
nodes with three primary functional categories:

1) Clients: invoke transactions, have them validated by
endorsers, and communicate them to orderers.

2) Peers: commit transactions and maintain the ledger.
3) Orderer: communicate transactions to peers in chrono-

logical order to ensure consistency of the hash chain.
These classifications are only function-based, and individual
nodes can serve multiple roles across transactions.

A transaction and the nature of the data associated with it
is application-specific such as proof of fund transfer across
clients in bitoin-like cryptocurrency networks, smart contracts
in business applications, patient diagnoses/records in medical
record storage, and raw data in cloud storage. We use the term
transaction broadly to represent all such categories.

A transaction is initiated by participating clients, verified
by endorsers (select peers), and broadcast to peers through
orderers. The ledger is stored as a (cryptographic) hash chain.

Definition 1: Let M be a set of messages of arbitrary
lengths, H the set of (fixed-length) hash values. A crypto-
graphic hash function is a deterministic map h :M→H.
Good hash functions hold several salient properties such as

1) Computational ease: Hash values are easy to compute.
2) Pre-image resistance: Given H ∈ H, it is computation-

ally infeasible to find M ∈M such that h(M) = H .
3) Collision resistance: It is computationally infeasible to

find M1,M2 ∈M such that h(M1) = h(M2).
4) Sensitivity: Change in hash to minor changes in the

input are computationally indeterminable.
A hash chain is a sequence of data blocks such that each block
includes a header, which is the hash value of the previous
(header included) block.

Bitcoin-type blockchains use the hash chain structure but
store the individual transaction data as a Merkle tree, with the
hash chain constructed using the Merkle root as the data in
the block [14]. We consider a simpler form of this wherein the
hash chain and verification is performed using hash values of
original transactions that form the hash chain. Let us elaborate.

Let Bt be the data block corresponding to the tth transac-
tion. Let g, h be two hash functions. Let Wt = (Ht−1, g(Bt))
is the concatenation of the previous hash and a hash of the
current data. Then, Ht = h(Wt) is the hash value stored with
the (t+1)th block. Thus, the hash chain is as shown in Fig. 1.

Using such a hashed form to construct the chain simplifies
consistency verification and reduces recovery costs, while
retaining all the salient features of the hash chain that directly
hashed block values would have. In more general forms, the

Fig. 1. Hash chain structure for the ledger. The chain is constructed by hashing
a hash value of the data for easier recovery and consistency verification.

data block can be replaced by a Merkle tree structure with the
results herein extending directly.

For all t, let Bt ∼ Unif(Fq) and g(Bt), Ht ∈ Fp, where
q, p ∈ N and Fq,Fp are finite fields of order q and p
respectively. Thus, the cost of storage per peer per transaction
in conventional implementation is

R̃s = log2 q + 2 log2 p bits. (1)

In practice, data blocks can be of varying sizes and the results
described here follow mutatis mutandis.

The transaction recovery methodology usually varies with
application. For uniformity, we consider a method wherein all
peers return stored data and a majority vote consensus is used.
This method is mathematically equivalent to most standard
techniques used for data recovery on the blockchain.

B. Blockchain Security

Two aspects of security are particularly important in
blockchain systems – integrity and confidentiality. Whereas
an integrity property guarantees that the stored data stored
cannot be corrupted unless most of the peers are corrupted,
a confidentiality property ensures that local information from
individual peers does not reveal sensitive transaction informa-
tion. We study both aspects of security in this work.

Blockchain is preferred for business applications primarily
because of the immutability guarantee on stored data. This is
owing to the fact that data corruption requires corrupting a
majority of the peers. Additionally, such corruptions can be
detected unless chain consistency is also ensured. Thus, an
adversary would also need to alter succeeding hash values,
establishing integrity of stored data.

Some systems enforce additional constraints on hash values
to enhance data integrity, e.g., difficulty targets in bitcoin.
These make recomputation of a valid hash expensive, thereby
adding to the difficulty of data corruption. Such methods how-
ever have recently faced criticism for being energy intensive in
the ledger creation process. We design a method in this work
that enhances data integrity without such extensive demands.

Conventional implementations of the blockchain involve
each peer storing a copy of the transactions. Thus confiden-
tiality is typically established through the use of private key
encryption of the data by the client, where the key is shared
only with a subset of peers with read authorization. However,
for such implementations, a leak at a single authorized peer
could lead to complete disambiguation.

C. Adversary Model

Here we consider two main attacks: non-adaptive, ran-
domized denial of service (DoS) attacks, and system-aware,
targeted data corruption attacks. Whereas the former prevents
data recovery, resulting in loss of stored data, the latter results
in potential alteration of stored data by an active adversary.

We study these two types of attacks separately with the
focus on complete data loss and on adversarial corruption.
In addition, let us presume that in any slot, a peer could fail
(nodal failure or local data loss) independently with probability
ρ. Let ρ̄ = 1− ρ. We now elaborate on the adversaries.

First, we consider a non-adaptive adversary who is unaware
of the system parameters and the distribution of data among
peers. We refer to such adversaries as DoS adversaries. We
assume that the adversary selects C peers at random, where
C is chosen according to a distribution Pdl(·), to perform a
DoS attack such that corrupted peers do not return the data
corresponding to the requested data block. The choice of Pdl is
made either by a budget-limited adversary aiming to maximize
probability of data loss.

On the other hand, active adversaries aim to alter a value Bt
to some B′t. We define the semantic rules of a valid corruption.
An active adversary corrupting a peer can

1) learn the contents stored in the peer;
2) alter block content only if it has access to the block; and
3) alter hash values preserving chain integrity, i.e., attackers

cannot invalidate other transactions in the process.
We presume that the adversary is computationally limited from
performing exhaustive search on the message/hash space. For
ease of understanding we presume that local data loss does not
occur in the presence of active corruption. This can however be
incorporated into the study separately through careful analysis.
Additionally, as the adversary is adaptive, we also presume that
it is aware of the parameters that define the data storage.

Let the power of the adversary to corrupt any peer in
the network be characterized by the parameter Ptc ∈ [0, 1],
the probability that a peer can be successfully corrupted.
We presume homogeneity across the network and that the
corruptions are independent and identical across peers.

III. CODING SCHEME

We now describe the coding scheme for distributed secure
storage. We presume that all computation for the encoding
and decoding is done privately by a black box. That is, peers,
clients, and especially active adversaries are not made aware
of the code. Specifics of practical implementation of such a
black box scheme is beyond the scope of this paper.

A. Coding Data Block

We devise a coding mechanism that distributes the data
stored on the blockchain in a secure manner. At any time t,
for a transaction Bt, the client can choose the number kt ∈ [n]
such that each copy of the transaction data is distributed
among a set of kt peers. For convenience, we assume that
n is divisible by kt. Thus at any time t, select a partition of
the peers of size kt uniformly at random and let each set of the

Fig. 2. Encoding and decoding for a given zone allocation. Shaded regions
represent individual zones.

Algorithm 1 Coding scheme for data block
for z = 1 to n

kt
do

Generate private key K(z)
t ∼ Unif(Kt)

Encrypt block with key K(z)
t as C

(z)
t = Φ(Bt;K

(z)
t)

Distribute Ct and store among peers in {i : p
(i)
t = z}

Use Shamir’s (kt, kt) secret sharing on K
(z)
t and dis-

tribute shares (K
(z)
1 , . . . ,K

(z)
kt

) among peers in the zone
end for

partition be referred to as a data zone. For each peer i ∈ [n],
let p(i)t ∈ [nm] be the zone index. The data Bt will be securely
distributed in each zone.

The coding scheme essentially follows the same construc-
tion as in [15] except that the zone size varies with each block
as shown in Fig. 2 and summarized in Alg. 1. Here, Kt is
the space of key values as determined by the parameter kt.
Throughout this work, we presume that the secret shares in
Shamir’s secret sharing scheme are generated by evaluating
the polynomial at non-zero abscissa values chosen uniformly
at random without replacement from the corresponding field.

For ease, assume that each peer stores a component of the
code vector Ct. The theory extends naturally to other MDS
style distributed storage codes.

We now encode the hash values. Let us assume that there
exists a known algorithm that deterministically chooses a
partition Pt of the peers into sets of size m each at time t.
We refer to the sets of this partition as hash zones. We assume
that n is divisible by m. The hash values are then stored as
in [15] using Shamir’s secret sharing, i.e., at time t, each peer
in a hash zone stores a secret share of the hash value Ht−1
generated using Shamir’s (m,m) secret sharing scheme. The
same scheme is also used for the Merkle root g(Bt).

The storage for the tth transaction per peer is thus

R(t)
s = 1

kt
log2 |C|+ 2 log2 |Kt|+ 4 log2 p bits, (2)

where q and p are the data and hash field sizes, and |C| depends
on the encryption. If the keys are much smaller than the blocks,
we have considerable storage savings.

One example of a feasible encryption and the corresponding
decryption algorithm, that is optimal in the size of the key
space up to log factors, is described in [15, Alg. 3,4]. The
resulting storage cost for such a scheme is

R(t)
s = 1

kt
log2 q + kt(2 log2 kt + 1) + 4 log2 p bits. (3)

Fig. 3. Dynamic zone allocation: vary peer grouping over time.

Algorithm 2 Recovery scheme for data block
N ← [n]

Compute K(z)
t , for all z, by polynomial interpolation

Decode blocks B(z)
t ← Ψ

(
C

(z)
t ;K

(z)
t

)
, for all z ∈ [nm]

if |{B(z)
t : z ∈ [nm]}| > 1 then

for τ = t to min {t+ dt, T} do
Compute H(z)

τ , for all z, by polynomial interpolation
Determine W (i)

τ =
(
g(Biτ), Hi

τ−1
)
, for all i ∈ [n]

I ←
{
i : h(W

(i)
τ) 6= H

(z)
τ , z = p

(i)
τ+1

}
N ← N\I
if |{B(p

(i)
t)

t : i ∈ N}| = 1 then
break

end if
end for

end if
return Majority in {{B(p

(i)
t)

t : i ∈ N}}

It is evident that the storage cost initially decreases with kt,
minimizing for a value of the order of O(

√
log2 q).

Additionally, we note that using the dynamic zone allocation
strategy from [15, Alg. 5] for the partitions used for storing the
hash values implies that the integrity guarantees hold here as
well. That is, an active adversary needs to corrupt at least n/2
peers and over time almost all peers to perform a consistent,
targeted corruption of a data block. Further, we note that the
adversary would need to corrupt at least 2m new peers with
each new block in the chain. This is depicted in Fig. 3 and
the detailed proofs of the claims are in [15].

B. Recovery Scheme

For recovering a block, we make use of the shares stored
at all peers and return the most consistent version. However,
instead of exploring the entire length until we identify a unique
consistent version, we provide the client the freedom to choose
the depth dt to look into the hash chain to return the majority
consistent version.

To recover Bt, when there are T transactions in total, we
use Alg. 2. First, data blocks are recovered from each zone.
In case of mismatch, we check the hash chain for a maximum
depth of dt for consistency and eliminate inconsistent peers.
An inconsistency exists when the hash corresponding to data
stored by a node in the previous instance does not match
the current hash value. If a hash is not recoverable owing

to data loss or DoS, we skip the inconsistency check for
corresponding peers in that zone in that slot. Finally, the
majority of consistent data is returned.

The recovery process involves obtaining the data fragments
stored at each peer and the communication cost involved
therein typically supersedes any other computational costs. Let
Cr be the cost of communicating one unit of data by all peers
in the network.

According to Alg. 2, each peer first communicates the
codeword corresponding to the data block and the secret
share of the encryption key. This corresponds to 1

kt
log2 q +

kt(2 log2 kt + 1) bits. Additionally, each peer also commu-
nicates the secret shares of hash values corresponding to the
next d blocks, each of which contributes 2 log2 p bits, and
the corresponding data blocks for consistency check. Thus the
total worst case cost of recovering the tth data block is

R(t)
r = Cr

(
1
kt

log2 q + kt(2 log2 kt + 1) + 4dt log2 p
)
. (4)

As is evident, the recovery cost decreases initially with kt
and subsequently increases with a minimum achieved when
kt = O(

√
log2 q). For most practical applications q � n and

thus, choosing a large value of kt reduces the recovery cost.
On the other hand, the larger the depth dt, the higher the
recovery cost as it grows linearly.

IV. CORRUPTION COSTS

We now characterize the probability of data loss and tar-
geted corruption by budget-limited DoS and active adversaries.

A. Data Loss

A data block is lost when some peers undergo a DoS
attack and a sufficiently large number incur random data loss.
Consider an adversary that wishes to prevent the recovery of a
block B distributed according to the parameter k. Let r = n/k
be the number of copies of the data in the peer network. The
data is lost when there exists at least one node failure or DoS
attack in each zone.

The adversary picks a random number C ∼ Pdl and
performs a DoS attack on C uniformly random peers. Let
the number of peers corrupted in zone i be Xi and Yi
be the number that undergo data loss. Thus, (X1, . . . , Xr)
are distributed according to the multivariate hypergeometric
distribution with n objects, C draws, and k objects of each of
the r types.

The probability of data loss given the adversary attacks C
peers is

P [Data Loss|C] = P [Xi + Yi > 0, for all i ∈ [r]|C]

= P [Yi > 0, for all i ∈ [r] s.t. Xi = 0|C]

= E
[
(1− ρ̄k)(r−

∑r
i=1 1{Xi>0})|C

]
, (5)

where (5) follows from the independence of nodal failure and
the expectation is taken over the multivariate hypergeometric
distribution described above. Here 1 {·} is the indicator func-
tion. The probability of data loss is then obtained by averaging
(5) over C.

Then, for a DoS adversary limited by a budget Bdl of the
expected number of peers it can corrupt, Pdl can be determined
by solving the following linear program

Pdl ∈ arg max
p

n∑
c=0

p(c)E
[
(1− ρ̄k)(r−

∑r
i=1 1{Xi>0})|C = c

]
(6)

s.t.
n∑
c=0

cp(c) ≤ Bdl,

n∑
c=0

p(c) = 1, and p(c) ≥ 0, for all c.

Computing the conditional expectation in (6) requires
knowledge of the probability mass function (pmf) of the
number of zones with non-zero corruption, given by

P

[
r∑
i=1

1 {Xi > 0} = r̃

]
=

(
r

r̃

)
P

[
r̃∑
i=1

Xi = c

]
(7)

=

(
r

r̃

)(
r̃k

c

)/(
n

c

)
, (8)

where (7) follows from the symmetry in the zones. Then,
the random variable

∑r̃
i=1Xi follows the hypergeometric

distribution with parameters n, c, and r̃k representing size
of population, number of draws, and number of successes
respectively. This results in (8).

Solving the LP (6) gives us an idea of the budget-limited
DoS adversary and so the data loss probability can be sub-
sequently computed from (5). The optimal design choice to
account for the worst case DoS adversary would then be
to pick k such that it minimizes the worst case data loss
probability, i.e.,

k∗ = arg min
k

max
Pdl

P [Data Loss] .

However, the design choice is more nuanced and application-
specific as it has to also account for other costs.

B. Targeted Corruption

We now consider the security from active adversaries that
perform targeted corruption. In particular, let us presume that
the adversary aims to corrupt a block B to B′ when each
copy of the data is distributed across k peers, and the recovery
algorithm searches a depth of d along the chain. Again, let
r = n/k.

From the integrity guarantees established, we know that the
minimum number of peers that the active adversary needs to
successfully corrupt to perform the targeted corruption is n

2 +
2dm. However, the corruption is feasible only if the adversary
can find a set of r/2 zones to first corrupt the block data
in half the zones, and at least the subsequent 2dm peers, as
determined by the dynamic zone allocation scheme to alter
the hash values along the chain. For ease, we presume the
worst case, wherein the adversary has to corrupt exactly 2dm
following peers.

Then, the probability of successful targeted corruption of
such a system is

P [Targeted Corruption] =

(
r

r/2

)
P

(n2 +2dm)
tc . (9)

Note that both design parameters k and d influence the
integrity of stored data. Naturally, a larger d implies a lower
feasibility of targeted corruption. This however leads to a
higher recovery cost as indicated by (4).

Also, the larger the value of k, the smaller the probability
of targeted corruption. However, large k values also imply a
higher probability of data loss and thus, there exists a tradeoff
in the choice.

C. Data Confidentiality

With relation to confidentiality of stored data, we consider
two scenarios. First, we consider the amount of information
an eavesdropper, external to the system, receives from the
knowledge of the complete cipher code stored in a zone, about
the data block. Secondly, we study the minimum fraction of
peers that need to collude to recover stored data.

First, assume that an external eavesdropper receives the
complete cipher text, C, but not the encryption key K corre-
sponding to a zone. Since the block data are chosen uniformly
at random,

H(B|C) ≤ H(K,B|C) = H(K). (10)

The entropy of the transaction block is actually H(B) =
log2 q > H(K). Thus at any time t, the lower bound on
the information revealed from the knowledge of the encrypted
storage is

I(Bt;Ct) ≥ log2

(
q

kt(2 log2 kt + 1)

)
. (11)

Note that this is the minimum amount of information that
the eavesdropper is aware of regarding the stored data. Ideally,
a client might require this information leak, and at least the
lower bound to be low. It is evident that this is facilitated by
a large value of kt.

Next, consider peers who collude to read stored data. From
Shamir’s secret sharing of the encryption key, the data can be
recovered with probability one, only from the collusion of at
least k peers. That is, the minimum fraction of peers that need
to collude to read stored data is

fil =
kt
n
. (12)

This again emphasizes the need for a large kt.

V. BLOCKCHAIN-BASED CLOUD STORAGE

As mentioned earlier, the individual client choices of design
parameters are influenced by the variety of tradeoffs estab-
lished here. Blockchain-based storage systems are of interest
owing to the immutability guarantees on stored data. Using
the tradeoffs established here, we describe a scheme selection
mechanism by which the client can opt for a service that best
serves the data being stored. Additionally it is important to
note that the clients can inherently value different data blocks
differently by appropriately varying the design choices.

A. Security-based Scheme Selection

Consider a cloud storage system that implements our code
to store data on the blockchain. Without loss of generality,
let us assume that the cost of storing one unit of data at all
peers per unit time is one. The communication cost for data
recovery, Cr is priced in relation to this.

Let the frequency of data retrieval be ν, and let the param-
eters be k, d. Then, the storage cost per unit time is

Service Cost = Rs + νRr

=
(
1
k log2 q + k(2 log2 k + 1)

)
(1 + νCr)

+ 2 log2 p(1 + dνCr), (13)

which is obtained from (3) and (4).
Naturally, given the set of parameters, the probability of data

loss, targeted corruption, and the fraction of colluding peers
for information leak are determined by the maximum value of
the LP (6), (9), and (12) respectively.

Thus, given a particular data type, the client can choose the
design parameters by solving the following integer program

(k∗, d∗) ∈ arg min
k,d

Rs + νRr (14)

such that
P [Data Loss] ≤ δdl, (15)
P [Targeted Corruption] ≤ δtc, and (16)
fil ≥ δil. (17)

Note that (14) is a non-linear integer program and presumes
knowledge of the parameters that define the adversary strength.

B. Data Insurance

Distributed storage on blockchain systems provide us with
an interesting opportunity to offer data insurance [18] for
saved blocks of data owing to the security guarantees. Here,
we briefly describe parameter selection (storage code design)
to store data valued at a certain level such that the service
provider on average obtains a certain desired profit margin.

Consider storing a data block valued by the client at V .
Let µ ∈ [0, 1] be the profit margin desired by the service
provider. Let w1 ∈ [0, 1] be the fraction of DoS adversaries,
and w2 = 1 − w1 be the fraction of active adversaries. Here
we do not consider information leak through collusion. Now,
in any slot, the probability that the data is lost or successfully
corrupted in a slot is given by

θ = w1P [Data Loss] + w2P [Targeted Corruption] .

Let R = Rs + νRr be the service cost per unit time. The
time T for data loss or successful corruption is distributed
geometrically with the parameter θ. Then the expected time
for payout of the insured data upon losing it is 1

θ . Thus, the
service provider can select the storage parameters by solving
the following problem

(k∗, d∗) ∈ arg min
k,d

C, such that C ≥ (1 + µ)V p. (18)

Again this is a non-linear integer program that is to be solved
to obtain the desired profit margin on insured data blocks.

VI. CONCLUSION

In this work, we used a novel combination of secret key
sharing, private key encryption, and distributed storage to
design a code to distribute transaction data securely among
peers in a blockchain. Decoupling the code for data and hash
values, and using dynamic zone allocation, we enhanced the
integrity of data storage on a blockchain. We studied the
tradeoffs in storage and recovery cost, and the probabilities
of data loss and targeted corruption in the presence of DoS
and active adversaries. We formulate a cloud storage system
and formulate the parameter selection problem as an integer
program subject to conditions on the probability of data loss
and corruption. Further, we described the parameter selection
problem for insuring data stored on the blockchain.

REFERENCES

[1] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “SoK: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in Proc. 2015 IEEE Symp. Security Privacy, May
2015, pp. 104–121.

[2] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder, Bit-
coin and Cryptocurrency Technologies: A Comprehensive Introduction.
Princeton: Princeton University Press, 2016.

[3] D. Tapscott and A. Tapscott, Blockchain Revolution. New York:
Penguin, 2016.

[4] M. Iansiti and K. R. Lakhani, “The truth about blockchain,” Harvard
Bus. Rev., vol. 95, no. 1, pp. 118–127, Jan. 2017.

[5] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in Proc. 2016 IEEE Symp. Security Privacy, May 2016, pp.
839–858.

[6] Blockchain info. [Online]. Available: https://blockchain.info/home
[7] M. Vilim, H. Duwe, and R. Kumar, “Approximate bitcoin mining,” in

Proc. 53rd Des. Autom. Conf. (DAC ’16), Jun. 2016, pp. 97:1–97:6.
[8] P. Fairley, “Blockchain world - feeding the blockchain beast if bitcoin

ever does go mainstream, the electricity needed to sustain it will be
enormous,” IEEE Spectr., vol. 54, no. 10, pp. 36–59, Oct. 2017.

[9] M. O. Rabin, “The information dispersal algorithm and its applications,”
in Sequences, R. M. Capocelli, Ed. New York: Springer-Verlag, 1990,
pp. 406–419.

[10] A. G. Dimakis and K. Ramchandran, “Network coding for distributed
storage in wireless networks,” in Networked Sensing Information and
Control, V. Saligrama, Ed. New York: Springer, 2008, pp. 115–136.

[11] C. Cachin and S. Tessaro, “Asynchronous verifiable information disper-
sal,” in 24th IEEE Symp. Rel. Distrib. Sys. (SRDS’05), Oct. 2005, pp.
191–201.

[12] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath,
“Optimal locally repairable and secure codes for distributed storage
systems,” IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 212–236, Jan.
2014.

[13] S. Pawar, S. El Rouayheb, and K. Ramchandran, “Securing dynamic dis-
tributed storage systems against eavesdropping and adversarial attacks,”
IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6734–6753, Oct. 2011.

[14] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba,
A. Miller, P. Saxena, E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer,
“On scaling decentralized blockchains,” in Financial Cryptography
and Data Security, ser. Lecture Notes in Computer Science, J. Clark,
S. Meiklejohn, P. Y. A. Ryan, D. Wallach, M. Brenner, and K. Rohloff,
Eds. Berlin: Springer, 2016, vol. 9604, pp. 106–125.

[15] R. K. Raman and L. R. Varshney, “Dynamic distributed storage for
scaling blockchains,” arXiv:1711.07617v2 [cs.IT], Jan. 2018.

[16] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[17] H. Krawczyk, “Secret sharing made short,” in Advances in Cryptology
— CRYPTO ’93, ser. Lecture Notes in Computer Science, D. R. Stinson,
Ed. Berlin: Springer, 1994, vol. 773, pp. 136–146.

[18] X. Ma, “On the feasibility of data loss insurance for personal cloud
storage,” in Proc. 6th USENIX Conf. Hot Topics Storage File Sys., Jun.
2014, pp. 2–2.

