
Empirical Kolmogorov Complexity
Ari Trachtenberg
Boston University,
8 St. Mary’s St.,

Boston, MA 02215, USA,
trachten@bu.edu
February 1, 2018

Abstract—The Kolmogorov complexity of a string is the short-
est program that outputs that string, and, as such, it provides a
deterministic measure of the amount of information within the
string that is related, but independent of, Shannon entropy. In
practice, this complexity measure is uncomputable and mainly
useful for deriving theoretical bounds.

In this work, we consider the task of empirically computing
Kolmogorov complexity for short strings. We design and build a
virtual One Instruction Set Computer that we use to empirically
compute the Kolomogorov complexity of short strings (within
this computing model). It is hoped that this approach could
inform novel cloud-based data compression methods that more
effectively digest human data than standard Lempel-Ziv based
compression.

The ability to compress data, both at rest on storage
systems and in transit over communications lines, has taken
on increasing significance in our age of data abundance and
sharing, where it is often much easier and more efficient to
create data than to distribute it to all interested parties. Most
of the common lossless compression schemes are ultimately
based on the venerable Lempel-Ziv compression algorithm [1],
which asymptotically compresses a stationary, ergodic source
to its entropy rate [2]. The slow convergence of this algorithm
to the entropy rate has led to a number of variants [3] aimed
at speeding up the convergence.

The key point, however, is that these approaches view the
data to be compressed as the result of a random statistical
source, whose complexity can be measured in terms of Shan-
non entropy [4]. As a result, data that is produced by a simple,
predictable process may still provide very poor compression.
For example, the string of increasing base-10 integers:

1 2 3 4 5 . . . 1000

is compressed into 1850 bytes with the standard gzip com-
pressor, even though the pattern is produced losslessly by only
42 bytes of Perl code:

foreach $ i i (0 . . 1 0 0 0) {
p r i n t ” $ i i ” ;

}

Indeed, the divergence between the length of the source code
producing an output and the Lempel-Ziv compression of that
output can be arbitrary large. Replacing 1000 in the example
above with 10, 000 adds one byte to the source code length,

but 20, 352 bytes to the gzip’ed compression. Adding more
zeroes widens this gap as far as desired.

Kolmogorov complexity attempts to address this deficiency
by defining the complexity of a string not in terms of the
statistical properties of its source, but in terms of the shortest
program needed to produce the string. Although the expected
Kolmogorov complexity of uniformly random length n strings
is asymptotically equal to their entropy [5], this is heavily
influenced by the large number of strings that are not com-
pressible. Many strings produced and used by humans are, in
fact, the result of natural, determinative processes and, it is
hoped, may actually be compressible.

Unfortunately, determining the Kolmogorov complexity of
a string is not generally possible with Turing-based comput-
ers [4], and this has hampered practical progress on this front
thus far. However, the increased computing and memory power
available today does leave room for empirically computing
Kolmogorov complexity of short strings, based on a chosen
reference language. This, in turn, leads to the hope of better
compression of some human generated texts.

Ultimately, the goal of this work is to provide a means
of compressing text closer to its Kolmogorov complexity.
We do this by empirically running many different programs
and recording their outputs, in an attempt to identify the
shortest program for producing each output. For efficiency and
compactness, our programs are written in a customized byte-
level One-Instruction Set Computer, and they exhibit several
desirable properties:

• Compression of non-statistical sources - they may be able
compress some data that can be generated from simple
code even if it does not exhibit obvious textual patterns.

• Efficient compression and decompression - online aspects
for both processes are linear-time, with the bulk of the
computational effort being off-line.

• Contained decompression - although compression re-
quires significant resources and offline processing, de-
compression can be accomplished on devices with limited
computation and communication resources.

I. BACKGROUND

Our results are based on two well-studied ideas in the
literature, for which we provide a brief background herein,

many without explicit proofs (which are available in the
corresponding references).

1) Kolmogorov complexity: Intuitively, the Kolmogorov
complexity of a string is the length of the shortest program
needed to produce the string. In this vein, a binary string of l
ones, for example, has a lower Kolmogorov complexity than
a binary string of l random bits: the former can be expressed
in terms of a short program that writes a binary one l times,
whereas the latter, presumably, would suffer from a lack of
randomness if it were produced by a simple program.

Ultimately, the Kolmogorov complexity C(x) of a string x
depends on the language of the program that is producing it,
and all of this can be formalized in terms of a “universal”
partially recursive function; the interested reader is referred to
the seminal work on the topic by Ming and Vitányi [6] or the
more accessible summary by Kouckỳ [7]. The main theorems
from these works of relevance to us are as follows.

First of all, the Kolmogorov complexity of a string cannot
be much larger than the length of the string itself, since one
way of computing a string is simply to print it out.

Theorem I.1 (Trivial upper bound). There exists a constant c
such that, for all strings x,

C(x) ≤ |x|+ c,

where |x| denotes the length of x.

A simple pigeon-hole counting argument also shows that
there exists strings that do not do much better than this upper
bound.

Theorem I.2. There exists a string x such that

C(x) ≥ |x|.

These strings are called Kolmogorov Random. Indeed, a
simple generalization of this argument shows that most strings
have high Kolmogorov complexity [6, 8]:

Theorem I.3. For any constant c ≥ 0, there are at least 2n−
2n−c + 1 strings x of length n for which

C(x) ≥ |x| − c.

In other words, at least half of all strings compress by at
most one character, and three-fourths compress by at most two
characters.

Unfortunately, no program can generally compute the Kol-
mogorov Complexity of a string [6][Theorem 2.3.2], or even
whether a string is Kolmogorov Random [8]. In more technical
terms, these problems are both not recursive.

The silver lining is that we can enumerate the set of strings
with a given Kolmogorov complexity: [6][Theorem 2.7.1]

Theorem I.4. The set A = {(x, a) : C(x) ≤ a} is recursively
enumerable.

Indeed, it is this last point that we attempt to exploit by em-
pirically and explicitly computing the Kolmogorov complexity

of short strings. To do this concretely, we fix a very specific
programming language, described in the next section.

2) One Instruction Set Computer: A One Instruction Set
Computer (OISC) is a Turing-complete machine based on a
single machine instruction. Created initially as an educational
tool [9], various OISC machines have been proposed since in
the literature (see [10] and the citations therein). For example,
the SBN instruction - Subtract and Branch if Negative - accepts
three operands: one operand is subtracted from a second, with
a branch to a third operand address if the result is negative.

The OISC closest to our approach is the SUBLEQ machine,
which operates according to the following C-style pseudocode
provided in [11] (together with a statement, but not a proof,
of its Turing completeness):

Algorithm 1 SUBLEQ
procedure SUBLEQ(a,b,c)

*b -= *a
if *b ≤ 0 then

goto c
end if

end procedure

II. DESIGN

Our main goal in this work is to design and implement a
One Instruction Set Computer (OISC) that will allow empirical
evaluations of the Kolmogorov complexity of various short
strings.

We will then use these evaluations to produce a more
general compressor, and corresponding decompressor. We will
be specifically interested in several specific properties.

• Universality of input - it should be possible to run
any binary sequence through the compressor and produce
an output, though, of course, the output might not be
shorter than the input. Under this regime, it is possible
to run the output of a compressor through the very same
compressor, in the hopes of getting a shorter result.

• Universality of output - it should be possible to run any
binary sequence through the decompresser to produce an
input.

• Contained decompression - the algorithm for decom-
pression must require as little resources as possible, so
that it can be effectively placed, for example, on devices
with limited computation, storage, or networking capa-
bilities. Compression, on the other hand, could require
significant network or computing resources.

We next detail the technical specifications of the OISC that
we implement.

A. The OISC

Our OISC, called SUBLEQ_M , is based on the SUBLEQ
machine described in Section I-2

TAPE
Index: 0 1 2 3 4 5 . . .
Tape (hex): 90 91 92 93 94 input . . . 0 . . .
ACC = 0

Fig. 1. Initial state of the SUBLEQ_M machine.

a) Initialization.: Our machine runs on a semi-infinite
tape TAPE of unsigned 8-bit bytes, starting at memory index
5, to which the read head points at the beginning of a run;
indices 0, through 4 of the tape head have, respectively, bytes
0x90 through 0x94 pre-initialized so as to allow some initial
backward movement of the read head from the first instruction.

The machine input is placed on the tape, byte by byte, start-
ing at index 5, and it is zero-extended through the remainder of
the tape. In addition the machine has one accumulator register
ACC , which is initialized to the zero byte. The state of the
machine at startup is thus summarized by Figure 1.

b) Execution.: At each step, our machine reads one
unsigned byte B from the tape read head, and logically divides
it into two four-bit nybbles B1 (low-order bits) and B2 (high-
order bits), so that B = B2||B1 and || denotes concatenation.
The machine then executes according to Algorithm 2.

Algorithm 2 SUBLEQ_M

procedure SUBLEQ_M (B1, B2)
TAPE [B1] -= ACC
ACC=TAPE [B1]
if TAPE [B1] % 2 == 0 then

goto B2
end if

end procedure

Note that the addresses represented by B1 and B2 are
interpreted relative to the current read head, and shifted by -8,
so as to allow head movement backwards (up to 8 steps) or
forwards (up to 7 steps). In addition, the subtraction operation
is implemented modulo 256, since the result must be an
unsigned byte.

c) Termination: Execution proceeds until one of the
following terminating conditions:

• Memory is accessed at index i < 0. (hang)
• The machine attempts to evaluate a zero byte. (overt

termination)
• More than 1000 computation steps have been completed.

(time bound)

The output of the machine is the contents of all tape memory
after the initialization segment (i.e. symbols at indices 0
through 4) and until the last byte accessed during the machine
computation.

d) Example: Figure 2 demonstrates the evolution of
the computation of the machine on the input 0x88acd4,
expressed in hex, where the tape byte in bold is the byte
currently under the read head.

Step Head ACC Tape (hex)
0 5 0 90 91 92 93 94 78 ac d4
1 4 120 90 91 92 93 94 78 ac d4
2 5 24 18 91 92 93 94 78 ac d4
3 4 96 18 91 92 93 94 60 ac d4
4 5 184 b8 91 92 93 94 60 ac d4

Fig. 2. Sample run of our machine.

The machine hangs after iteration number 4, because it
tries to access the memory at address −3. The result of the
calculation is the hex string 0x60acd4, which appears on the
tape after the initialization segment 0x9091929394.

III. COMPRESSION

The SUBLEQ_M variant described in Section II-A produces
a matching from its input to its Machine-executed output.
We can use this matching to provide a general purpose data
compressor, and decompressor, based on an estimated (or, in
some cases, exact) Kolmogorov complexity of short substrings.

A. Encoding

Compression proceeds in two phases: off-line data collec-
tion, and on-line compression.

1) Off-line data gathering: Initially, we exhaustively enu-
merate a number of short strings and evaluate our SUBLEQ_M
machine on each putative input, recording the resulting (in-
put,output) pair in a database. The database is uniquely keyed
against the output, so that if two inputs produce the same
output, only the shorter of the inputs is maintained. In this
way, the database entry provides an upper bound on the
Kolmogorov complexity of an output string within the context
of our SUBLEQ_M machine. The bound is tight if all shorter
inputs have been processed. We will denote the mapping of
output to input strings by δ : Σ∗ −→ Σ∗, where Σ denotes the
alphabet over which strings are chosen, and ∗ does the Kleene
closure.

2) Online compression: When provided a specific plaintext
string s to compress, we iteratively apply Algorithm 3 until
the entire string has been processed.

Algorithm 3 Compression framework
• Identify a substring sx of s that appears as an output in

our database.
• Record the input δ(sx) corresponding to this output as

part of the compressed version of the string.
• Remove sx from s, leaving the rest of the string for

processing.

Several important technical details figure prominently in the
effectiveness of this compression, as described herein.

a) Multiple substrings: There may be several substrings
that appear as outputs in the database that has been compiled
off-line. In this case, it may be difficult to make the choices

INSTANCE:
A string s and a collection of substrings si of s,
i = 0 . . . n−1, each with a compressed length c(si).

SOLUTION:
A set I ⊆ 0 . . . n− 1 such that s = ||iinIs(i).

MEASURE:
Minimize

∑
iinI c(si).

Fig. 3. Substring Compression Problem.

that produce the optimal compression. The formal problem is
stated in Figure 3, using the standard notation || to denote
string concatenation.

Theorem III.1. Substring Compression is NP-hard.

Proof: The proof follows from a transformation from the
NP-complete Knapsack problem [12]. In the decision version
of that problem, one is given a set U and function s(u) and
v(u) for each element u ∈ U , with the task of deciding
whether there is a subset U ′ ⊆ U such that

∑
uinU ′ s(u) ≤ B

and
∑
u∈U ′ v(u) ≥ K. The functions s(·) and v(·) represent,

respectively, the size and value of an element in U , in the
language of the problem. We will be interested in a variant of
the optimization version of the problem, where K is not given
(but rather the sum

∑
u∈U ′ v(u) needs to be maximized) and

the bound B needs to be met exactly (i.e.,
∑
uinU ′ s(u) = B).

To relate a given Knapsack instance to a Substring Com-
pression problem, we:

• Number the elements of U = u0, u1, u2, . . . , un−1.
• Set our string to be s = 1B (i.e. B ones in a row).
• Make our substrings si = 1s(ui).
• Define our costs c(ui) = −v(ui).

Since all substrings are over the same character space,
a solution to the Substring Compression problem involves
finding substrings whose lengths sum to B, corresponding to
Knapsack elements whose sizes sum to B. The optimization
involves minimizing sum of c(u) = −v(u) for elements u
corresponding to chosen substrings; this corresponds directly
to maximizing the sum of v(u) for the same elements, thereby
solving the Knapsack problem.

One standard approach to such a computational challenge is
to use a greedy algorithm, which, at each iteration, picks the
substring the produces the greatest local compression ratio. In
other words, we iteratively (until exhaustion) pick sx such that
|sx|
|δ(sx)| is maximized.

b) Non-existence of substring: There are no guarantees
that our set of outputs is complete, in that it will cover any
possible plaintexts. In other words, it is possible that δ(σ) is
not defined in our database for any prefix σ of s, in which case
our iterative compressor will fail. Such cases can be coded
with a flag and the relevant prefix of the string encoded in
plain text.

B. Decoding

The different inputs that are recorded by Algorithm 3 need
to be collected in an unambiguous manner into a single file.
The decoder reads this file and extracts, one by one, the
input sequences, which are processed through our SUBLEQ_M
machine to produce decompressed outputs. The outputs are
stitched together to produce the original plain text file.

We next detail several approaches to the question of how
best to unambiguously encode inputs so that they may be
properly decoded.

1) Size-delimiting: One of the easiest methods of unam-
biguously collecting the inputs is to reserve one byte at
the beginning of each input sequence to mark its length.
This approach fixes the overhead of encoding based on the
shortest input length, which may be significant. For example, if
compression is restricted to input lengths that are three bytes or
more, then the overhead of size-delimited encoding is capped
at one of every four bytes (i.e. 25%).

On the other hand, size-delimited encoding has several
useful properties:

• Parallelization - Because the starting point of each input
is known at decoding time, they can each be decoded in
parallel on their own version of our SUBLEQ_M machine.

• Databaseless decoding - The decoder does not need
access to the large database that is used in encoding,
since it is just running the SUBLEQ_M machine on each
input instance. This means that decoding can take place
on computationally limited devices without the need for
a network connection, or, for that matter, any knowledge
of the original database.

• Re-encoding - The output of the encoder can be re-
encoded many times with the very same encoder, and
peeled apart, layer by layer, by the decoder.

A variant the size-delimited encoder is the space-delimited
encoder, which uses the all zero byte (treated as a “halt”
instruction by our machine) to delimit input sequences.

2) No delimiting: An alternate approach to input encoding
involves the use of no delimiters. The preliminary results in
Section IV show a coverage area of roughly 41%, meaning that
about 59% of plain texts will not match an output sequence
in our database. This non-match can then be used as an oracle
for correct decoding.

Given an encoding e, the decoding process accumulates a
result res as follows:

In this way, finding a plaintext that does not match our
database δ indicates that decoding has failed. To avoid restrict-
ing plaintexts to only those strings that match our database,
we can add a control bit to indicate whether an upcoming text
represents (a) an input, or (b) a 16-byte plaintext sequence.

The benefit of this approach is that it incurs a single bit
of overhead per input encoding (or none, if the plaintexts are
restricted to those in the database). The deficits are that:

• Decoding may produce an incorrect result, if incorrect

1: procedure DECODE(e, res)
2: if e is empty then
3: return res
4: end if
5: for l ← 16 down to 1 do
6: σ ← the l-character prefix of e
7: α← SUBLEQ_M applied to σ
8: if δ(α) == σ then
9: Decode(e− σ, res+ α);

10: end if
11: end for
12: end procedure

encoding subsequences match our database nevertheless.
• Decoding requires access to the database δ and can no

longer proceed on devices that do not have network
access.

3) Prefix trees: A final method for encoding is to enforce
prefix-freedom on all inputs in our database, by throwing out
those inputs that are prefixes of other inputs. This combines
some of the benefits and deficits of the previous approaches,
in that:

• Encoding overhead is now zero.
• Decoding can proceed in parallel, as all delimits can be

identified easily.
• One may encode the result of an encoder iteratively.
• Decoding requires access to the (potentially large) prefix-

tree.

In all these approaches, the advantage of a Kolmogorov-
based compression is that it might be possible to compress
strings that are not typically compressible by Lempel-Ziv
approaches, such as code binaries or, possibly, encrypted text.

IV. RESULTS

Our initial evaluations involved evaluating SUBLEQ_M on
all one, two, and three character ASCII inputs, and roughly a
quarter of four character ASCII inputs.

a) Statistics: Our evaluation resulted in a database of
roughly 100GB that contained 981, 438, 660 entries. Of these:

1) 47.19% represented entries where the input and output
differ.

2) 97.99% of inputs were subsequences of their output.
3) The average output to input length ratio was 1.33.
4) 41.33% of plaintexts have a prefix that matches a

database key.

The first statistic above denotes the number of non-trivial
compressions in the database. Roughly 53% of the strings
evaluated do not change at all under the transformation of
SUBLEQ_M . Indeed, the second statistic shows that most input
sequences simply add some bytes when evaluated under our
machine. Still, there is a small, but non-trivial compression
ratio among the database entries, as denoted by the third
statistic. The final statistic is calculated by producing the

subset S of database entries whose outputs form a prefix-
free set, and evaluating the Kraft-McMillan fraction [2] on
the lengths of this set: ∑

s∈S

1

256|s|
.

A. Lengths

We also produced a matrix of the input-output lengths in
our database:

0 0 0 0 0 0
0 100 0 0 0 0
0 16 27070 0 0 0
0 18 4421 7309384 0 0
0 20 4987 1223847 521346969 0
0 22 5548 1384579 88166245 0
0 24 6127 1545181 99405600 0
0 26 6698 1712531 110654422 0
0 27 7024 1810602 118406082 0
0 0 346 172584 13748939 0
0 0 4 91781 9385823 0
0 0 3 1969 3424496 0
0 0 9 4589 520467 0
0 0 3 1844 154244 0
0 0 1 1073 296472 0
0 1 264 69725 487013 0
0 0 0 362 34671 0
0 0 0 66 9906 0
0 0 0 3 603 0
0 0 0 2 2642 0
0 0 0 0 1149 0
0 0 0 0 35 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

In this matrix, the value of cell [i, j] is the number of

database entries where the input has length i and the output
has length j. For example, there are 4421 entries where the
input has length 2 and the output has length 3.

Several interesting artifacts arise from this table. Since we
have evaluated all strings of length 1, 2, and 3 in our machine,
the matrix diagonal revealse the fraction of Kolmogorov
random strings we have encountered:

100 + 27070 + 7309384 + 521346969

981438660
≈ 53.7%.

We can also test Theorem I.3 and various other Kolmogorov
properties. Finally, the highest compression ratio we can
expect with this table, per iteration, is 22

4 ≈ 5.5.

V. ACKNOWLEDGMENT*

The author gratefully acknowledges the feedback of Aryeh
Kontorovick on an earlier draft of this work. This work was
supported in part by the US National Science Foundation
under grants under grant CCF-1563753.

VI. CONCLUSIONS

We have outline an approach for empirically computing the
Kolmogorov complexities of short strings, and using this to
compress data without resorting to statistical evaluations, as
is done with Lempel-Ziv-based compressors. Our approach
is based on the use of a customized One Instruction Set
Computer to build a large database of the shortest programs
that produce specific strings. Though we are able to compress
some texts, additional efforts are needed to produce practical
compression benefits at large scale. We believe that such
scale is well within the current state of the art in computing
capability, and that further development of this approach could
allow for effective compression of some binary input sources
without obvious patterns.

REFERENCES

[1] J. Ziv and A. Lempel, “Compression of individual sequences via
variable-rate coding,” IEEE transactions on Information Theory, vol. 24,
no. 5, pp. 530–536, 1978.

[2] T. M. Cover and J. A. Thomas, Elements of information theory. John
Wiley & Sons, 2012.

[3] T. A. Welch, “A technique for high-performance data compression,”
Computer, vol. 6, no. 17, pp. 8–19, 1984.

[4] P. Grunwald and P. Vitányi, “Shannon information and kolmogorov
complexity,” arXiv preprint cs/0410002, 2004.

[5] L. Ming and P. M. Vitányi, “Kolmogorov complexity and its applica-
tions,” Algorithms and Complexity, vol. 1, p. 187, 2014.

[6] L. Ming and P. Vitányi, An introduction to Kolmogorov complexity and
its applications. Springer Heidelberg, 1997.

[7] M. Kouckỳ, “A brief introduction to kolmogorov complexity,” MÚ AV
ČR, Praha, p. 4, 2006.

[8] L. Trevisan, “Notes on kolmogorov complexity.” [Online]. Available:
https://people.eecs.berkeley.edu/∼luca/cs172/notek.pdf

[9] F. Mavaddat and B. Parhami, “Urisc: the ultimate reduced instruction set
computer,” International Journal of Electrical Engineering Education,
vol. 25, no. 4, pp. 327–334, 1988.

[10] W. F. Gilreath and P. A. Laplante, Computer architecture: A minimalist
perspective. Springer Science & Business Media, 2003, vol. 730.

[11] P. J. Nürnberg, U. K. Wiil, and D. L. Hicks, “A grand unified theory for
structural computing,” in International Symposium on Metainformatics.
Springer, 2003, pp. 1–16.

[12] M. R. Garey and D. S. Johnson, Computers and intractability. wh
freeman New York, 2002, vol. 29.

