
Learning to Decode LDPC Codes with
Finite-Alphabet Message Passing

Bane Vasić1, Xin Xiao1, and Shu Lin2

1Dept. of Electrical and Computer Engineering, University of Arizona
2Dept. of Electrical and Computer Engineering, University of California, Davis

Email:1{vasic, 7xinxiao7}@email.arizona.edu
2 shulin@ucdavis.edu

Abstract—In this paper, we discuss the perspectives of utilizing
deep neural networks (DNN) to decode Low-Density Parity Check
(LDPC) codes. The main idea is to build a neural network to
learn and optimize a conventional iterative decoder of LDPC
codes. A DNN is based on Tanner graph, and the activation
functions emulate message update functions in variable and
check nodes. We impose a symmetry on weight matrices which
makes it possible to train the DNN on a single codeword
and noise realizations only. Based on the trained weights and
the bias, we further quantize messages in such DNN-based
decoder with 3-bit precision while maintaining no loss in error
performance compared to the min-sum algorithm. We use
examples to present that the DNN framework can be applied
to various code lengths. The simulation results show that, the
trained weights and bias make the iterative DNN decoder
converge faster and thus achieve higher throughput at the cost
of trivial additional decoding complexity.

I. INTRODUCTION

The concept of designing neural networks (NN) with the
functionality of a decoding algorithm for error correction
codes has been proposed in the early nineties. One type of NNs
is proposed for convolutional codes, which adopts Recurrent
Neural Network (RNN) [1]–[3] to implement the Viterbi algo-
rithm. The other type of NNs is designed for linear block codes
[4]–[6]. The common feature of this approach is that decoding
is treated as a classification problem, and the NN learns how
to classify the channel output words, and thus forms the
decision region for each codeword. As a typical classification
problem, the training set had to include all codewords in a
code space, making the sizes of both training set and neural
network exponential in the dimension of code. As a result,
these method becomes intractable except for very short codes.
Recently, Nachmani et al. [7], Lugosch and Gross [8] and
Nachmani et al. [9] proposed using Deep Neural Networks
(DNNs) to improve the Belief Propagation (BP) decoding of
High Density Parity Check (HDPC) codes on the Additive
White Gaussian Noise Channel (AWGNC). These DNNs are
constructed based on Tanner graph, with various structures
including Multi-Layer Perceptrons Neural Network (MLPNN)
and RNN. One common but key characteristic among them is
that the activation functions over hidden layers enforce the
equality of weights of a given neuron, which translates to
ensuring symmetry of the node update functions. This allows
the training to be performed on a single codeword and its noise

realizations rather than on the entire code space. The proposed
DNN decoders for HDPC codes can be viewed as weighted BP
decoders, where the trainable weights and bias are assigned
over edges in the Tanner graph of HDPC codes. Applying
learning methods such as Stochastic Gradient Descent (SGD)
and Adam [10] to find the weights and the bias allows such
NN decoders to compensate for short cycles (4-cycles) in the
Tanner graph of HDPC codes, and to improve the BP decoding
performance. In the same spirit, Xu at al. [11] used the DNN to
improve the BP decoding for Polar codes, while Gruber at al.
[12] showed that for very short length, decoders of structured
codes are indeed easier to learn than that of random codes,
and that the training based on all possible codewords results
in a NN decoder that has performance approaching maximum
a posteriori (MAP) decoding.

In this paper, we propose to use MLPNN to learn and
optimize iterative decoders of finite length LDPC codes. Once
the weight values are determined, the NN is translated back
to a conventional description of variable and check node
update functions. Our focus is on the update functions defined
on finite-precision messages which lead to Finite-Alphabet
Iterative Decoders (FAIDs) [13]. The BP decoders with mes-
sages quantized using 6-7 bits [14]–[16] has been shown
not to suffer significant performance degradation compared to
floating BP or BP-based algorithms on the AWGNC. On the
other hand, it is know that for the Binary Symmetric Channel
(BSC) a FAID with only 3-bit precision outperforms the BP
and all other message passing decoders [13], [17]. This is
achieved by designing the FAID message update rules that
correct trapping sets with a dominant contribution to the error
floor. Recently, Nguyen-Ly at al. [18] and Meidlinger at al.
[19] used density evolution to optimize the FAID over the
AWGNC. In this paper, we also consider the AWGNC, where
traditional iterative decoders take longer to converge to a valid
codeword. The goal is to achieve comparable performance
with a small maximum number of iterations. More precisely,
we utilize NN to optimize a FAID on the AWGNC to achieve a
desired trade-off between the error performance and decoding
latency. In particular, we are interested in improving the
waterfall performance while restricting the maximal number
of iterations to a very small value.

A MLPNN is constructed based on Tanner graph of the
LDPC code and defines a set of activation functions according

to “proto” message update functions such as min-sum or an
exiting FAID. Instead of training different weights over distinct
edges in each iteration as in [9], [11], we impose the con-
straints over weights and biases to direct the learning process,
while keeping small number of parameters. This results in
a faster learning, lower decoding complexity and memory
requirements while preserving good error performance.

The rest of the paper is organized as follows. Section
II gives the necessary background. Section III presents
the framework of iterative MLPNN decoder. Section IV
introduces DE and the quantization based on the trained
parameters. Section V demonstrates the examples and
simulation results. Section VI concludes the paper.

II. PRELIMINARIES

Let C be a LDPC code and G = (V,C,E) be its Tanner
graph, where V /C is the set of variable /check nodes, and E
is the set of edges. If the code length is N , the number of
parity check equations is M , and the number of edges is I ,
then |V | = N , |C| = M , and |E| = I . Let the i-th variable
node be vi, j-th check node be cj , then the edge connecting
vi and cj is denoted by (vi, cj), 1 ≤ i ≤ N, 1 ≤ j ≤M .

Let x = (x1, x2, ...xN) be the transmitted codeword and
y = (y1, y2, ...yN) be the received channel output vector. i.e.,
yi = (−1)xi + zi for 1 ≤ i ≤ N where zi is gaussian noise
with standard deviation σ. The likelihood message is defined
by the log likelihood ratios (LLR): Λ = (λ1, λ2, ..., λN),
where λi = log Pr(xi=0|yi)

Pr(xi=0|yi) . Let Dproto be the given conven-
tional iterative decoder (such as bit-flipping (BF), Gallager-
B, min-sum algorithm (MSA), sum-product algorithm (SPA),
etc.) to be learned and optimized. Suppose that the messages in
`-th iteration in Dproto are computed using the following up-
dating rules: ν(`)vi→cj = Φ(yi,m

(`)
i) and µ(`)

cj→vi = Ψ(n
(`−1)
j),

where m
(`)
i (n(`)

j) denote the incoming messages to a variable
node vi (check node cj). Let Lmax be the maximum number of
iterations in Dproto. The proposed iterative MLPNN decoder is
defined by a 3-tuple Dnn = (G,Φ(`)

opt,Ψ
(`)
opt), where Φ

(`)
opt (Ψ(`)

opt)
is the optimized decoding rule based on Φ (Ψ) to update the
messages passing from variable nodes (check nodes) to check
nodes (variable nodes) in the `-th iteration.

The MLPNN consists of one input layer, K hidden layers
and one output layer. Let r0 (rK+1) be the output of input
(output) layer, and rk, 1 ≤ k ≤ K be the output of the k-th
hidden layer. In particular, rk = (rk,1, rk,2, ...rk,Jk), where
Jk is the number of neurons in k-th layer, and rk,t is the
the output value of the t-th neuron in k-th layer, 0 ≤ k ≤
K + 1, 1 ≤ t ≤ Jk. For the input and output layer, we have
J0 = JK+1 = N . The (k − 1)-th layer and k-th layer are
connected by a trainable neuron weight matrix W

(k)
Jk×Jk−1

,
and the bias vector in the k-th layer is denoted by b(k).

III. A MLPNN DECODING FRAMEWORK

To obtain the proposed iterative Dnn, we first construct a
MLPNN based on G. Our network will be initialized by the

knowledge of Φ and Ψ and will perform learning with a given
optimality criterion.

A. The MLPNN structure

The constructed network corresponds to an “unwrapped”
Tanner graph where every two hidden layers correspond to
one iteration in Dproto. The first hidden layer corresponds to
the initialization in Dproto. In total, there are K = 2Lmax + 1
hidden layers in MLPNN. Except for the first hidden layer, the
activation functions over odd (even) hidden layers perform in
a manner similar to Φ (Ψ). Based on Dproto, this framework
includes the following two classes of MLPNNs: (1) edge-based
and (2) node based. In an edge-based MLPNN, each neuron
in every hidden layer represents the message over an edge in
E in a corresponding iteration of Dproto. All hidden layers
have the same number of neurons, which is e.

In a node-based MLPNN, there are two types of neurons
representing messages over variable and check nodes in the
corresponding iteration of Dproto, respectively. Each hidden
layer contains only one type of neurons and has size of either
N or M .

More specifically, consider an edge-based MLPNN, the
activation function in the k-th layer is defined as follows

rk =

{
Φ(b(k−1

2)y,W(k+1
2)rk−1), if k is odd,

Ψ(rk−1), if k is even.
(1)

In Eq. 1, r0 = Λ. Furthermore, all nonzero entries in W(k)

are forced to have the same value, i.e., W(k)(i, j) = w(k)

if W(k)(i, j) is a nonzero entry in W(k). Since Φ and Ψ in
Dproto satisfy symmetric conditions [13], Eq. (1) preserves
them as well.

Fig. 1: MLPNN of PG(7,3)

Fig. 1 illustrates the MLPNN structure of the Projective
Geometry (PG) code PG(7,3). This PG code has code length
N = 7, rate 0.429, and its parity check matrix has M = 7 rows
and both column and row weight of 3. We consider Dproto

as the conventional MSA running for maximum of Lmax
iterations, and therefore the corresponding MLPNN is edge-
based. All its hidden layers have 21 neurons corresponding
to the messages over the 21 edges. The t-th neuron in the
first (last) hidden layer is connected to a single input node
vi in the input (output) layer if vi is incident to edge (t).
The rest hidden layers are connected as follows: for an odd
(even) hidden layer, if edge (t) = (vi, cj), then the t-th neuron

in this layer is connected to all neurons (except t-th neuron)
in previous layer whose corresponding edges in Tanner graph
are incident to vi (cj). The constructed MLPNN consists of 11
hidden layers, which corresponds to Lmax = 5 iterations of
MSA. Note that the arrows in the odd hidden layers in Fig. 1
indicate the biased channel values.

B. Learning

Since the channel is output-symmetric, we can assume
that the all-zero codeword is transmitted, i.e., x = 0, thus
y = x + z = z. With the symmetry conditions on the
weight matrices, it is sufficient to use a database composed
of the realizations of the noise vector z = (z1, z2, . . . , zN).
Let r0 = Λ and u = rK+1 be the perceptron values in the
input and output layer, respectively. Both r0 and u have length
J0 = JK+1 = N , with r0 receiving likelihood message Λ.
When Dproto is the MSA, instead of using the likelihood
message, it is sufficient to feed the noise patterns z into
the MLPNN for learning, i.e., r0 = z. This is because the
MSA is insensitive to the noise variance. We take account of
nonlinear activation functions over u, which convert likelihood
messages into probability. A common nonlinear activation
function is the sigmoid function σ(x) =

(
1 + x−1

)−1. Since
Pr (xi = 0|yi) =

(
1 + e−λi

)−1
= σ (λi) and u is the estimate

of likelihood message Λ, σ(u) is the estimate of probability
Pr (xi = 0|yi). There are several candidates for loss function
as listed in [9], and we consider the following cross-entropy
loss function:

Γ (u,x) = − 1

N

N∑
i=1

(1− xi) log(σ(ui)) + xi log(1− σ(ui)).

(2)
We use Adam with mini-batches for training. The optimized
decoding rules of Dnn (with floating point precision) are
derived based on the trained {ŵ(`)} and {b̂(`)}:

Φ
(`)
opt = Φ(b̂(`)y, ŵ(`)m

(`)
i),Ψ

(`)
opt = Ψ(n

(`−1)
j). (3)

Especially, the weight and bias of output layer are used in
hard-decision in all iterations.

C. Quantization of neuron outputs in Dnn

Now we explain how to quantize Dnn based on trained
parameters ŵ(`) and b̂(`) for implementation in hardware. A
decoder with quantized messages is denoted by Dnn,Q.

Let Ann,Lmax
= {−Hl, ...,−H2,−H1, 0, H1, H2, ...Hl} be

the finite message alphabet consisting of 2l+ 1 levels, where
Hi ∈ R+ and Hi > Hj for any i > j. The quantization
function Q(.) of messages of Dnn is defined based on a
threshold set T = {Ti : 1 ≤ i ≤ l + 1} as follows:

Q(x) =

{
sgn(x)Hi if Ti ≤ x < Ti+1

0 if |x| < T1
(4)

where Ti ∈ R+ and Ti > Tj for any i > j, and Tl+1 =
∞. Conventionally, we can define the quantizer thresholds as:
T1 = α1H1, Ti = αiHi−1 + (1− αi)Hi for 2 ≤ i ≤ l, based

on the set of scalars Sl = {α1, α2, ..., αl} that controls the
relative distance between two consecutive levels.

The quantization of the channel output vector y should
maximize the mutual information between channel input and
the quantizer output. But for simplicity, the same quantizer is
used for messages. The vector y received from the channel
is first quantized into yQ using the above rules. When Dnn,Q

starts, Ψ
(`)
opt is the same as that in Dnn except that messages

n
(`−1)
j are quantized, and their elements belong to Ann,Lmax

.
Based on {ŵ(`)}, {b̂(`)} and above rules, for every `-th
iteration, the quantized decoder Dnn,Q performs the following:

Φ
(`)
opt,Q = Q

Ä
Φ(b̂(`)yQ, ŵ

(`)m
(`)
i)
ä
. (5)

IV. EXPERIMENTS AND NUMERICAL RESULTS

The simulation of Dnn with floating point is carried out as
Dproto with additional ŵ(`) and b̂(`), while the test simulation
of Dnn,Q in finite alphabet is carried out with the quantizer.
The measure of performance is bit-error-rate (BER) or frame-
error-rate (FER). We compared the performance of Dnn

Dnn,Q, and Dproto with same Lmax.
We built MLPNNs in Python3.6 and used Tensorflow [20]

library for training. The training set has size of 5000, and the
NN is optimized by Adam. The training set consists of realiza-
tions of Gaussian noise vectors. We consider the conventional
MSA as Dproto, with maximum number of iteration Lmax set
to 5. In another words, we want to use MLPNN to learn
conventional MSA. We constructed two MLPNNs to show
the flexibility in terms of code length, one for a short code,
Tanner code (155, 64), and the other for a medium length code,
QC-LDPC code (1296, 972). For each MLPNN, based on the
its trained weights and bias, we further give a finite alphabet
Ann,5 of 7 levels and a threshold set T , whose quantization
function is equivalently interpreted into a collection of 3-bit
variable node update LUTs.

A. Tanner code experiment

The Tanner code has column and row weight of 3 and 5,
respectively, thus the MLPNN consists of 11 hidden layers of
size 465 = 3 × 155. Batch size was set to 500, with varying
SNRs = {5.5, 6, 6.5, 7, 7.5} and 1000 samples per SNR. The
number of epochs is 30. The learning rate of Adam is 0.09,
and the trained weights {ŵ(`)} are

{1.1388, 0.8541, 0.8565, 0.8726, 0.9464, 1.0603, 0.9712}.

The distribution of b̂(`) in different iterations is shown in Fig.
2. The bias distribution has a high variance at the first two
iterations, and it gets narrower as the iteration grows. The
variance of bias comes from the training, which has only 30
epochs.

Fig.3 gives the BER performance of Dnn, Dproto, and the
normalized MSA (NMSA) with the scaling factor of 0.75. Dnn

outperforms both NMSA and Dproto, and at BER of 10−9,
within 5 iterations, the Dnn achieves coding gain of 0.4 dB
over Dproto. The Dnn with 5 iterations has similar performance

Fig. 2: Bias distribution in different iterations of Tanner code (155,64).

Fig. 3: BER Performance of Dnn, Dnn,Q, Dproto and Dproto,Q of Tanner
code (155,64).

with Dproto with 10 iterations. In other words, the Dnn can
achieve faster convergence than Dproto.

Based on {ŵ(`)} and {b̂(`)}, we obtain a 7-
level Ann,5 and a set of scalars S3. In particular,
Ann,5 = {−1.5,−0.8,−0.35, 0, 0.35, 0.8, 1.5} and
S3 = {0.4, 0.4, 0.2}. This results in a 7-level quantizer
Q(.), i.e., messages are in 3-bit precision. Quantizing
both Dnn and Dproto by Q(.), we obtain a 3-bit precision
NN decoder Dnn,Q and 3-bit precision conventional MSA
Dproto,Q. Their performance with 5 iterations are given
in Fig.3 as well. The simulation results show that with 5
iterations, Dnn,Q outperforms NMSA, conventional MSA,
and Dproto,Q. The improvement of both Dnn and Dnn,Q

comes from the additional {ŵ(`)} and {b̂(`)}. Equivalently,
Φ

(`)
opt,Q in different iterations can be mapped into a collection

of 3-dimensional look up tables (LUTs), which describe the

(a)

(b)

(c)

(d)

(e)

Fig. 4: Φ
(`)
diff

in different iterations of Tanner code (155,64).

variable node updating rules. Based on Φ
(`)
opt,Q, we obtain

four distinct LUTs, with the first and second iteration sharing
the same LUT. These four distinct LUTs only differ in a few
entries. One approach to illustrate how the quantized MLPNN
decoder benefits from {ŵ(`)} and {b̂(`)} is to observe how
these LUTs change with iterantion number and how they are
different from Dproto,Q. The difference table between LUTs
corresponding to Dnn,Q and Dproto,Q in the `-th iteration is
defined by:

Φ
(`)
diff = Φ

(`)
opt,Q − ΦQ,

where ΦQ = Q (Φ(·, ·))). Φ
(`)
diff of degree-3 Tanner code in

different iterations have size of 7 × 7 × 7, and are shown
in Fig 4, where the x, y-axes represent the two incoming
messages from the check node neighbors and the z axis
indicates the channel value. In the first two iterations, Dnn,Q

is very different from Dproto,Q due to the {ŵ(`)} and {b̂(`)}.
As the iteration grows, the difference between LUTs becomes
smaller. In the 5-th iteration, Dnn,Q and Dproto,Q are almost
the same. More specifically, Φ

(`)
diff tells us how Dnn,Q im-

proves decoding from Dproto,Q. For example, at the first two
iterations, when the channel value is −H3 (corresponding to
the bottom flat) and m1 = m2 = H3, the output of Dnn,Q is
less than that of Dproto,Q (which is H3 + H3 − H3 = H3),
meaning that Dnn,Q attenuates the magnitude of the likelihood
messages, thus preventing its fast growth. Similar attenuation
behavior can be observed in the case of the channel value is
H3 (corresponding to the top flat) and m1 = m2 = −H3,
when the output of Dnn,Q is greater than that of Dproto,Q

(which is −(H3 +H3) +H3 = −H3). As the LUTs of Dnn,Q

and Dproto,Q almost merge in the end, their BER curves do
not diverge far away from each other. We note that the similar
effect of message attenuation is observed in FAID for the BSC,
although these decoders are derived using completely different
methodology that relies on trapping set harmfulness [17].

B. Column-weight 4, medium-length code experiment

In the second experiment, we consider the QC LDPC code
(1296, 972) of column and row weights equal 4 and 16,
respectively. The MLPNN of this code consists of 11 hidden
layers of size 5184 = 4×1296. The batch size was set to 300,
with one SNR = 4.5dB and 5000 samples for this SNR. The
number of epochs is 100. The learning rate of Adam is 0.001,
and the trained weights {ŵ(`)} are:

{0.9755, 0.7316, 0.7664, 0.7790, 0.7799, 0.7791, 0.7801}.

The distribution of b̂(`) in different iterations is shown in
Fig. 5. Similar to the Tanner code, the variance of bias
distribution becomes smaller as the iteration number grows.
Since the training for this MLPNN has 100 epochs, the
variance becomes very small.

The BER curves of Dnn, Dproto and normalized MSA with
scalar of 0.75 is given in Fig.6. Simulation results show that
Dnn outperforms by 0.3dB the NMSA and by 0.45dB the
Dproto at BER of 10−8 within 5 iterations. The Dnn with 5

Fig. 5: Bias distribution in different iterations of QC LDPC code (1296, 972).

Fig. 6: BER Performance of Dnn, Dnn,Q, Dproto and Dproto,Q of QC
LDPC code (1296, 972).

iterations performs better than Dproto with 10 iterations, i.e.,
the Dnn converges faster than Dproto.

Based on {ŵ(`)} and {b̂(`)}, we obtain a 7-level
Ann,5 and a set of scalars S3. In particular, Ann,5 =
{−1.0,−0.5,−0.2, 0, 0.2, 0.5, 1.0} and S3 = {0.4, 0.5, 0.6}.
This results in a 7-level quantizer Q(.), i.e., messages have
3-bit precision. Quantizing both Dnn and Dproto by Q(.),
we obtain a 3-bit precision NN decoder Dnn,Q and 3-bit
precision conventional MSA Dproto,Q. Their BER curves with
5 iterations are present in Fig.6 as well. The simulation results
show that with 5 iterations, Dnn,Q outperforms NMSA by
0.13dB and conventional MSA by 0.3dB at BER of 10−8,
and it can achieve 0.3 dB coding gain over Dproto,Q. The
improvement of both Dnn and Dnn,Q again comes from the
additional {ŵ(`)} and {b̂(`)}.

Similarly, Φ
(`)
opt,Q in different iterations can be mapped

into five 4-dimensional LUTs. Based on Φ
(`)
opt,Q, we obtain

3 different LUTs, with the last 3 iterations having the same
LUT. These 3 distinct LUTs only differ in a few entries. For
channel value of −H3, Φ

(`)
diff of degree-4 QC LDPC code

(1296, 972) in different iterations are shown in Fig 7, where
the x, y, z-axes represent the three incoming messages from
CN neighbors. For all 5 iterations, Dnn,Q update rules are
different from that of Dproto,Q. Again, Φ

(`)
diff tells us how

Dnn,Q improves decoding compared to Dproto,Q. For example,
in the last three iterations, when m3 = H3 (corresponding to
the top flat) and m 1 = m 2 = H1, t he output of D nn,Q i s less
than that of Dproto,Q (which is H1 + H1 + H3 − H3 = 2H1),
meaning that Dnn,Q again attenuates the message magnitudes.
The quantization function in (4) is symmetric, thus all of
Φ

(`)
diff , Φ

of Φ(`)
diff

(`)
opt,Q, ΦQ satisfy symmetry condition. The “mirror”

with channel value of −H3 in 5 iterations is given in
Fig 8, whose channel value is +H3. Similarly, in the last three
iterations, when m3 = −H3 (corresponding to the bottom flat)
and m1 = m2 = −H1, the output of Dnn,Q is greater than that of
Dproto,Q (which is −H1 − H1 − H3 + H3 = −2H1), showing
that Dnn,Q attenuates the message magnitudes.Φ(`)

diff

is almost stable in all iterations, which results in the BER
performance difference between Dnn,Q and Dproto,Q. This
Φ

(`)
diff comes from {ŵ(`)} and {b̂(`)}, resulting in an improved

error performance. As we have shown in [21], a decoder sup-
porting multiple decoding rules can be efficiently implemented
in hardware, thus an iteration-dependent decoding rule requires
only a small hardware overhead.

For Dnn with floating point, since the training can be
conducted offline, the increased decoding computational com-
plexity comes from the additional floating-point multiplica-
tions, which is just 2n per iteration. For Dnn,Q with finite
precision, especially in 3-bit precision, the memory as well as
the computational complexity can be significantly reduced.

V. CONCLUSION

In this paper, we explore a potential of MLPNN to learn
a finite-alphabet iterative message-passing decoding rule of
LDPC codes. In the training, we impose additional constraints
on weight matrix to control the direction of weight changes
and accelerate training. Based on the trained weights and bias,
we further quantize the MLPNN decoder messages to 3-bit
precision. Examples and simulation results show that within
5 iterations, the MLPNN decoder can achieve at least 0.4 dB
over conventional floating point MSA at trivial increase of
decoding complexity, and perform no worse than conventional
MSA with 10 iterations. Furthermore, the quantized MLPNN
decoder with 3-bit precision performs better than both NMSA
and conventional MSA. We use the difference between the
decoder’s LUTs to show how the quantized MLPNN decoder
benefits from the trained weights and bias and how it improves
decoding compared to the quantized MSA. Numerous open
questions are left for future research, such as the dependence

(a)

(b)

(c)

(d)

(e)

Fig. 7: Φ
(`)
diff

in different iterations of QC LDPC code (1296,972) with
channel output −H3.

(a)

(b)

(c)

(d)

(e)

Fig. 8: Φ
(`)
diff

in different iterations of QC LDPC code (1296,972) with
channel output H3.

of weight matrices on the code structure, effects of number of
iterations and quantizer optimization.

ACKNOWLEDGMENT

This work is funded by the NSF under grant NSF ECCS-
1500170 and is supported in part by the Indo-US Science
and Technology Forum (IUSSTF) through the Joint Networked
Center for Data Storage Research (JC-16-2014-US).

REFERENCES

[1] A. Hamalainen and J. Henriksson, “Convolutional decoding using
recurrent neural networks,” in Neural Networks, 1999. IJCNN ’99.
International Joint Conference on, vol. 5, 1999, pp. 3323–3327.

[2] S. M. Berber and V. Kecman, “Convolutional decoders based on artificial
neural networks,” in 2004 IEEE International Joint Conference on
Neural Networks, vol. 2, July 2004, pp. 1551–1556 vol.2.

[3] P. J. Secker, S. M. Berber, and Z. A. Salcic, “A generalised framework
for convolutional decoding using a recurrent neural network,” in Fourth
International Conference on Information, Communications and Signal
Processing, 2003 and the Fourth Pacific Rim Conference on Multimedia.
Proceedings of the 2003 Joint, vol. 3, Dec 2003, pp. 1502–1506.

[4] J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and
polynomials over the binary n-cube,” IEEE Transactions on Information
Theory, vol. 35, no. 5, pp. 976–987, Sept. 1989.

[5] Y.-H. Tseng and J.-L. Wu, “High-order perceptrons for decoding error-
correcting codes,” in Neural Networks, 1992. IJCNN., International Joint
Conference on, vol. 3, Jun 1992, pp. 24–29.

[6] J.-L. Wu, Y.-H. Tseng, and Y.-M. Huang, “Neural network decoders for
linear block codes,” International Journal of Computational Engineering
Science, vol. 3, pp. 235–256, 09 2002.

[7] E. Nachmani, Y. Beéry, and D. Burshtein, “Learning to decode linear
codes using deep learning,” in Communication, Control, and Computing
(Allerton), 2016 54th Annual Allerton Conference, 2016, pp. 341–346.

[8] L. Lugosch and W. J. Gross, “Neural offset min-sum decoding,” 2017.
[Online]. Available: https://arxiv.org/abs/1701.05931

[9] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein,
and Y. Beéry, “Deep learning methods for improved decoding of linear
codes,” 2017. [Online]. Available: https://arxiv.org/abs/1706.07043

[10] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[11] W. Xu, Z. Wu, Y. L. Ueng, X. You, and C. Zhang, “Improved polar
decoder based on deep learning,” in 2017 IEEE International Workshop
on Signal Processing Systems (SiPS), Oct 2017, pp. 1–6.

[12] T. Gruber, S. Cammerer, J. Hoydis, and S. ten Brink, “On deep
learning-based channel decoding,” CoRR, vol. abs/1701.07738, 2017.
[Online]. Available: http://arxiv.org/abs/1701.07738

[13] S. K. Planjery, D. Declercq, L. Danjean, and B. Vasić, “Finite alphabet
iterative decoders, Part I: Decoding beyond belief propagation on the
binary symmetric channel,” IEEE Trans. Commun., vol. 61, no. 10, pp.
4033–4045, Nov. 2013.

[14] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, and X.-Y. Hu,
“Reduced-complexity decoding of LDPC codes,” IEEE Trans. Commun.,
vol. 53, no. 8, pp. 1288–1299, Aug. 2005.

[15] J. Zhao, F. Zarkeshvari, and A. H. Banihashemi, “On implementation
of min-sum algorithm and its modifications for decoding low-density
parity-check (ldpc) codes,” IEEE Transactions on Communications,
vol. 53, no. 4, pp. 549–554, April 2005.

[16] X. Zhang and P. H. Siegel, “Quantized iterative message passing
decoders with low error floor for ldpc codes,” IEEE Transactions on
Communications, vol. 62, no. 1, pp. 1–14, January 2014.

[17] D. Declercq, B. Vasić, S. K. Planjery, and E. Li, “Finite alphabet iterative
decoders, Part II: Improved guaranteed error correction of LDPC codes
via iterative decoder diversity,” IEEE Trans. Commun., vol. 61, no. 10,
pp. 4046–4057, Nov. 2013.

[18] T. T. Nguyen-Ly, V. Savin, K. Le, D. Declercq, F. Ghaffari, and
O. Boncalo, “Analysis and design of cost-effective, high-throughput
LDPC decoders,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. PP, no. 99, pp. 1–14, Dec 2017.

[19] M. Meidlinger, A. Balatsoukas-Stimming, A. Burg, and G. Matz,
“Quantized message passing for LDPC codes,” in 2015 49th Asilomar
Conference on Signals, Systems and Computers, Nov 2015, pp. 1606–
1610.

[20] M. Abadi, P. Barham, J. Chen, and et al, “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.

[21] F. Cai, X. Zhang, D. Declercq, B. Vasić, and S. K. Planjery, “Low-
complexity finite alphabet iterative decoders for LDPC codes,” IEEE
Transactions on Circuits and Systems - Part I: Regular Papers, 2014.

