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Abstract— In this paper, efficient methods to impr ove the box
and matching algorithm (BMA) arepresented.Firstly , an efficient
approach is intr oduced to terminate the decoding if a local
optimal candidate satisfies a probabilistic sufficient condition.
The false alarm probability associated with the use of the
probabilistic sufficient condition is also derived. Secondly, by
constructing a control band which is assumederror fr ee, the
matching capability of the BMA is enhanced.Mor e precisely,
the performanceof BMA of order

���������
is nearly achieved with

a small increasein complexity and no increasein memory with
respect to the BMA of order

�
. A tight performance analysis

is derived based on the theory of order statistics. An error
floor associatedeither with false alarms or with errors in the
control band is intr oduced,but this error floor can be controlled
using the analysis in both cases.Simulation results show that
the performance of the enhancedBMA for the decoding of the
RS(255,239)code with BPSK signaling over an AWGN channel
is about 0.1 dB away fr om that of maximum lik elihood decoding
at the word error rate (WER)

�
	���

.

I . INTRODUCTION

The box and matchingalgorithm (BMA)[3 ] is an efficient
mostreliablebasis(MRB) basedsoft decisiondecodingalgo-
rithm. TheBMA roughlyreducesthecomputationalcostof the
orderedstatisticdecoding(OSD) algorithm[1] by its squared
root at the expenseof memory. In addition to consideringall
codewordsassociatedwith error patternsof Hammingweight
at most � on theMRB, theBMA with order � alsoconsidersall
codewordsassociatedwith error patternsof Hammingweight
at most ��� on the � most reliable positions (MRPs), with����� , where � is the dimensionof the code.This algorithm
is referredto as BMA( �
������� ) and the ����� valuesoutside
the MRB asthe control band(CB).

In order to reducethe averagecomplexity, it is desiredto
know beforethecomputationof a candidatewhetherit cannot
be optimal or hasa very low possibility to be optimal. This
is the casewhen it doesnot satisfy somedeterministicnec-
essarycondition (DNC) or probabilistic necessarycondition
(PNC) for optimality. It is also desiredto know prematurely
that a candidateis optimal or has a high probability to be
optimal. This is the casewhen it satisfiessomedeterministic
sufficient condition(DSC)or probabilisticsufficient condition

(PSC)for optimality. DNCs andDSCsfor MRB list decoding
have beenstudied in [1][5][6][7][8][9] basedon a principle
first introduced in [4]. A PNC was proposedin [10] and
its effectivenesswas shown via simulations.DNCs and the
DSCs can reducethe averagecomplexity without degrading
the error performance.However, the existing ones are not
very efficient for long codesat practicalsignal to noiseratio
(SNR) as basedon the code minimum distance.PNCs can
reducethecomputationcomplexity at thepriceof performance
degradation,which may be not negligible, but need to be
properlyanalyzed[11].

To achieve betterperformance,BMA( �
������� ) with larger
order � is desired.However, not only the numberof processed
candidatesbut also the memory size increaseexponentially
with � . Henceit is desiredto increasethe decodingcapability
of BMA( ���
����� ) by consideringanadditionalsetof promising
candidates,insteadof resortingto BMA( �! #"$���%�&� ).

In thispaper, wefirst introduceaPSCwhichgreatlyreduces
the average complexity in all SNR regions. This PSC is
especiallyefficient for long codes.We also derive an upper
bound for the false alarm probability associatedwith this
PSC.Thenwe investigatea new methodto efficiently improve
the performanceof BMA( �
���'�(� ), that can approachor
even outperform BMA( �) *"��
���+� ) without increasingthe
memorysize. We denotethis type of algorithm as enhanced
BMA( �
�
�,�-� ). ThePSCis usedin theenhancedBMA( �
���.�-� )
to reducethe averagecomplexity.

I I . PRELIMINARY

Let / be a binary 0213���4��5$687 linear block codeof length 1
anddimension� with minimumHammingdistance596 defined
by its generatormatrix : . SupposeBPSKsignalingis usedfor
transmissionover anAWGN channelwith variance;�<>=�� . As-
sumethateachsignalhasunit energy. Let ? = 0A@B<9�C@$DB�FEGEHE @�IKJ!D�7
bea codewordin / . Thiscodeword is mappedontoasequence
of BPSKsignalsL = 0NM�<���M�D>��EHEGE MFIKJ!D�7 , where MPORQS0C�T"U7CVXW . This
codesequenceL is transmittedover the AWGN channel.LetY = 0AZ < �XZ D �FEGEHE Z I�J!D 7 be the received vector. In this case,the
reliability of the harddecision [B0AZ O 7]\_^a` associatedwith the



received signal Z O \'b is simply proportionalto its amplitudec Z O c .
A. Most Reliable Basis

Finding the MRB is the first step to be performed in
MRB reprocessingtype algorithms.The basic procedureis
the following:

1) Order the received symbols basedon their reliability
values in decreasingorder. This order of received symbols
definesa permutationd D .

2) Permutethecolumnsof generatormatrix : basedon d4D ,
which definesa permutedmatrix :Te . Gaussianelimination is
thenperformedto put :Te in reducedechelonform in orderto
determinethe � mostreliableindependentpositions(MRIPs).
A secondpermutation df` may be necessaryto make this
reducedechelonform matrix into a matrix :-g in systematic
form. The sequenceY is permutedaccordingly to form the
vector h definedas follows:

hiQjd 2 k d 1 k YUlHl E (1)

Define hnm as the vector correspondingto the MRB, and
define hpo as the vector correspondingto the least reliable
basis(LRB). Hence

c q msr O cptuc q msr v c for w'xy��zj{|z}� , andc q o!r OH~ cptuc q o4r vX~ c for w'xy��e�z#{9e�z+1|��� . Let �$e�Q k �$em �X��eo l
be the harddecisionof h�Q k h m �Xh o l .

Let � be the parity check matrix defined by the MRB.
The most right 1_��� columnsof � form the identity matrix
andcorrespondto the LRB. The left � columnscorrespondto
the MRB. In general,these � columnsform a densematrix,
definedas ��� .

I I I . PROBABIL ISTIC SUFFICIENT CONDITION (PSC)
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Fig. 1. Preliminaries

Let Õ�m be the error patterncorrespondingto h within the
MRB. Definevector �$e e< Q k ��em�Ö Õ�m|����eo l . Define ×�<�Q#��e e<!Ø ��Ù .
It is readily seenthat ×F< consistsof the linear combinationof
the columnscorrespondingto error positionswithin the LRB.
The Hammingweight of × < is the numberof error bits within
the LRB.

A columnof thedensematrix ��� canbeassumedto follow
a binomialdistribution andwith high probabilityhasa weight
closeto 0A1'�&�.7X=�� .

In a MRB-reprocessingalgorithm,a list ÚÜÛ2ÝÞÛ of MRB error
patterns ÕKO is used to producecandidates.We assumethat
the patterns ÕKO are processedin a predefinedorder and that
a cost function has to be minimized. A pattern Õ9O which
minimizesthis costfunctionover all patternsprocessedbeforeÕKO is referredto asa local optimumof Ú Û2ÝÞÛ . For each ÕKO , the
vector ��e eO Q k �$em�Ö Õ O �X��eo l is formed,andtherelatedsyndrome× O Qß�$e eO Ø �|Ù is computed.It follows that

× O Q àv
á.â W�ã äUåæ â�ç ã ä
è v Ö × < (2)

Hence × O is the summationof × < andthe columnswhere Õ O
and Õ m are different.Sincecolumnsin the densematrix ���
areassumedto follow a binomial distribution, thenwith high
probability ×UO hasa much larger Hammingweight than ×�< ifÕKOêéQßÕ�m .

In this paper, we introduce a new PSC for MRB-
reprocessingalgorithmsas follows. Supposea local optimal
candidatecorrespondingto the MRB error pattern Õ O is found
by a MRB-reprocessingalgorithmduring reprocessing.If the
weight of × O is smallerthana thresholdë , this local optimal
candidateis declaredto be optimal, and decoding can be
terminated.The advantagesof this methodare : (1) a miss
eventdoesnot leadto adecodingerror;(2) thePSCcangreatly
reducethe averagecomplexity; (3) the miss probability and
falsealarmprobability canbe derived basedon the theoryof
orderstatistics.

The fact that the syndromecorrespondingto a vectorwith
no error in the MRB hasin generalrelatively small Hamming
weight wasalsousedin [12][13]. A DSC usedfor reliability-
based syndrome decoding and a PSC used for minimum
weight syndromedecodingwere derived in [12]. However
both this DSC and this PSC still dependon the minimum
Hammingdistanceof the code.In [13], the syndromeweight
of the original receivedvectorwascomparedwith a threshold
beforedecodingto determinewhetherthe MRB is error free
or not. If theMRB wasdeterminedto beerror free,thenerror
positionsin the LRB wereflippedaccordingto the syndrome.
Otherwise,a method basedon the OSD conceptwas used
to find the error positionswithin the MRB by processinga
list of candidatesdeterminedby the columns of the parity
checkmatrix.Theefficiency of this decodingalgorithmhighly
dependson the thresholdas not only a falsealarm event but
also a miss event can lead to a decodingerror. Furthermore,
all the candidatesin a sublistareprocessedby thatalgorithm,
andno performanceanalysisis provided.

IV. PERFORMANCE ANALYSIS

A PSC can efficiently reduce the average computation
complexity. There are two types of events, however, which
arenot desirablewhena PSCis used.One is the missevent,
and the other is the falsealarmevent.



To analyzethesetwo events, let us first define the PSC
checkingì list Ú which containsonly the MRB error patterns
correspondingto all the local optimal candidatesin ÚÜÛ2ÝÞÛ .
Hence Ú is a random set, which dependson the received
vector. Definethe numberof MRB error patternsin Ú as

c Ú c .
In the following analysis,we assumeÕ�mí\îÚ Û2ÝCÛ , which

implies Õ�mï\ðÚ sinceonly the degradationdueto the PSCis
considered(see[11] to relatethis estimateto the performance
of a MRB-reprocessingalgorithm).AssumeBMA( �
�
�Ü�ñ� ) is
used.All the eventsdefinedbelow areconditionedon a given
SNR value.

A. Miss Event

Definethe Hammingweight of a vector ? as ò]6 k ? l . Then
the missevent ó%ô is definedasõ ÕKO3\'Ú÷öøò 6 k ×UO l x�ë (3)

The missevent implies that althoughthe optimal candidate
is within thesearchlist, it cannot bedeclaredoptimalwhenit
is processed.Furthermore,thereexists no MRB error patternÕ O in Ú , Õ O éQ�Õ m , which satisfiesthe PSC.As a resultall the
candidatesin the list have to be processed.Hencethe miss
event doesnot degradethe error performance.

We providea simpleupperboundof themissingprobability:ù Z9úUóûô-ü-x ù Z9ú�ò]6 k × 0
l ��ëTü (4)

Recall that ò 6 k ×�< l is the number of errors in the LRB,
which decreasesas the SNR increases.With a properchoice
of the thresholdë ,

ù Z9úUó ô ü canbecomevery small.
Sincethe missevent doesnot degradethe performance,we

mainly focus on the false alarm event, which degradesthe
error performance.

B. False Alarm Event

Definethe setof MRB error patternsý as follows

ý�Q}ú>Õ9O�ö$Õ9O�\_Úû�%Õ9O]éQßÕ�m��%ò 6 k ×�O l x�ëTü (5)

The set ý containsall MRB error patternsin Ú which arenot
the true MRB error patternbut satisfy the PSC.Define the
event óûþ>ÿ r D as c ý cKt " and ò 6 k ×�< l � ë (6)

For óûþ>ÿ r D , althoughthe optimal candidateis in Ú , the related
syndromedoesnot satisfy the PSC,and thereexists at least
oneMRB error pattern Õ O in Ú , Õ O éQ�Õ m , which satisfiesthe
PSC.Hencethe relatedcodeword is erroneouslydeclaredto
be optimal.

Definethe setof MRB error patterns
�

as follows� Q+ú>Õ9O�ö ÕKO3\'ý-��Õ9O is processedbefore Õ�m|ü (7)

Definethe event ó�þUÿ r ` asc � c,t " and ò 6 k ×F< l x ë (8)

For ó þUÿ r ` , although the optimal candidateis in Ú and the
relatedsyndromesatisfiesthe PSC, there exists at least one
MRB error pattern Õ O in Ú , Õ O éQ�Õ m , which satisfiesthe PSC

andis processedbefore Õ m . In this casetoo, a decodingerror
occursalthoughthe optimal candidateis in Ú andsatisfiesthe
PSC.Define the falsealarmevent ó�þUÿ as

óûþ>ÿ8Qßó�þUÿ r D�� ó�þUÿ r ` (9)

Sinceevents ó þ>ÿ r D and ó þ>ÿ r ` aredisjoint, it follows thatù Z9úUó þ>ÿ ü�Q ù Z9úUó þ>ÿ r D>üê ù Z9úUó þUÿ r ` ü (10)ù Z$ú>óûþ>ÿ$ü is not easy to be evaluatedbecausethe list of
candidatesconsideredby BMA( ���
�3�ð� ) is a randomvariable,
which is not asstructuredasthat of OSD(� ). However the list
of candidatesconsideredby BMA( �
���Ü��� ) is a subsetof that
consideredby OSD(��� ), we can thereforeset an upperbound
of
ù Z9úUó þ>ÿ ü for BMA( �
�����'� ) by deriving an upperboundof

(10) for OSD(��� ), which is developedas follows.
Define � asthe numberof errorsin the MRB. Using total

probability andbasedon the assumptionthat OSD(� ) is used,
(10) canbe written as

ù Z9úUó þUÿ ü�Q Oàv æ <
� ù Z$ú>ó þ>ÿ r D c �øQ�{.ü
 ù Z9ú>óûþ>ÿ r ` c �ïQ�{.ü�� Ø ù Z9ú��ïQ�{.ü (11)

From (6), we obtainù Z9úUó þ>ÿ r D c �øQ {,üQ ù Z9ú c ý cKt " and ò 6 k ×F< l � ë c �øQ�{.ü (12)

From (8), we obtainù Z9úUóûþ>ÿ r ` c �øQ {,üQ ù Z9ú c � cKt " and ò 6 k ×F< l x ë c �øQ�{.ü (13)

For a MRB error pattern Õ O \'Ú%�ûÕ O éQ�Õ m , defineù þ>ÿK0H{K7ÜQ ù Z9úUò 6 k × i l x ë c ò]6 k × < l � ë%�	�ïQ�{.üQ ù Z$úUò]6 k 
 Ö × < l x ë c ò]6 k × < l ��ë%�	�øQ {.ü (14)

where 
 is definedas
 Q àv
á.â W�ã ä åæ â ç ã ä
è v (15)

Definethe binomial distribution asù 021 c ;ð���f7ÜQ�
 ; 1�� � I 0Þ"]���f7�� J4I (16)

The columnweight of
è v in ��� canbe well approximated

by
ù 0Aò]6 k è v l c 1ð���4�Xw.E �$7 if 1_��� is large enough.This was

verifiedby simulation.Then ò]6 k 
 l canalsobe approximated
by
ù 0Aò]6 k 
 l c 1ð���4��w,E���7 regardlessof how many columnsin� � are involved in the summationof (15).

Note that the weight of a columnin � � cannot be smaller
than 5 6 �i" , where 5 6 is the minimumHammingdistanceof
the code.In fact the weight of 
 shouldrangefrom 5 6 ���
to 1���� if � columnsare involved in the summationof (15).
In the following, theseboundaryeffects are neglectedas of
minor influenceandallowing columnsof weight smallerthan596#� " even increasesthe probability of a falsealarm.



From simulations, we observe that ò]6 k × < l is also well
approximatedby a binomial distribution

ù 02ò]6 k × < l c 1_���4���47 ,
where the parameter� dependson the SNR, the number
of errors � in the MRB, and is conditionedon the eventú�ò]6 k × < l ��ëTü . However, to obtainthedistribution of ò]6 k 
 Ö× < l , we do not needto know the value of � as shown in the
following.

Let � Q 
 Ö ×�<�Q 02ò%D��Cò ` �FEGEHEG�Cò]IKJ � 7 , whereò]ORQ 
 O Ö ×�<Fr O .
It follows that

ù Z9ú 
 O QS"�ü�Q "� (17)ù Z9úU× <Fr O QS"�ü�Q�� (18)ù Z9ú���ORQ "�ü�Q "� (19)

Hence,since ò]6 k 
 l is distributed as
ù 0Aò]6 k 
 l c 1��+�4�Xw.E �$7 ,ò 6 k 
 Ö × < l hasthe samedistribution as ò]6 k 
 l if ò]6 k × < l is

distributed as
ù 0Aò]6 k × < l c 1����!���f7 , regardlessof the value of� .

Thenbasedon (2) and(15), (14) canbe simplified as

ù þ>ÿ8Q ù þ>ÿ�0G{K7�Q ù Z9ú�ò]6 k 
 l x ëTü (20)

For order � reprocessing,define

c Ú Û2ÝCÛ 0G{K7 c Q và � æ < 
 � ��� ��{sQ#w,��"���EHEGEH�X� (21)

so that

ù Z9ú c ý c�t " c ò]6 k × < l � ë%�	�ïQ�{.ü
xy"]� �O�á�â W�� o! #"$ 0C"]� ù þ>ÿ�7QS"]� k "]� ù þ>ÿ l&% o' ("$ �)HO#* % JpDQ ù % o' ("$ �)HO#* % (22)

Theinequalityin (22) follows from thefactthatwe consider
all the MRB error pattersin Ú�Û2ÝCÛ insteadof just thosein Ú .
Then(12) canbe upperboundedby

ù Z9úUó�þUÿ r D c �ïQ�{.üx ù % o  ("$ )GO+* % Ø ù Z9ú�ò]6 k × < l ��ë c �øQ�{.ü (23)

To calculate
ù Z9ú c � cTt " c ò 6 k ×F< l x ë%�,� Q {.ü , we

use similar approximations.Note that when � Q w , Õ m
is processedfirst and no other MRB error pattern can be
processedbefore Õ m . In this case

c � c Q�w . Otherwise,we still
considerthe worst case,in which all the MRB error patterns
processedfrom phase(w ) to phase({ ) are in Ú .

Following the analysismethodsusedabove, we obtain

ù Z9úUó�þUÿ r ` c �ïQ�{.üx ù % o' ("$ -) v.* % Ø ù Z9ú�ò]6 k × < l x�ë c �øQ {.ü (24)

Then(11) canbe upperboundedas

ù Z9úUó þUÿ üx ù % o' ("$ -)GO+* % Ø ù Z9ú�ò 6 k ×F< l � ë c �øQ#w,ü Ø ù Z9ú��øQ�w�ü
 Oàv æ D

� ù % o' ("� -)HO#* % Ø ù Z9ú�ò 6 k ×�< l ��ë c �øQ {.ü
 ù % o  ("$ ) v.* % Ø ù Z$úUò]6 k × < l x�ë c �øQ {.ü�� Ø ù Z9ú��øQ�{,ü9�

(25)

ù Z$ú/�øQ�{.ü is computedfrom orderedstatistics[14][15].
for example,we readily obtain

ù Z9úUó�þUÿ c 021 ��0N��7�üx ù % o  #"$ ) ` * % Ø ù Z9ú�ò]6 k × < l ��ë c �øQ#w,ü Ø ù Z9ú��øQ�w�ü � ù % o  ("$ ) ` * % Ø ù Z9ú�ò]6 k × < l � ë c �øQS"�ü ù % o  ("$ )�D-* % Ø ù Z9ú�ò]6 k × < l x ë c �øQ}"�ü�� Ø ù Z9ú��øQ "�ü ù % o  #"$ ) ` * % Ø ù Z9ú��ïQ���ü (26)

It follows that(26) canbeusedasanupperboundof
ù Z9úUó þ>ÿ ü

for BMA( "����]�&� ).
The error probability

ù43
of a MRB reprocessingtype

algorithm-ý with PSC can be upper boundedby the union
boundas

ù 3 x ù mso'5  ù � O g Ûn ù Z9úUóûþ>ÿ$ü9� (27)

where
ù mso'5 is the probability of an MLD error and

ù � O g Û is
the probability that the transmittedcodeword is not in the list
consideredby algorithm-ý . It is desiredthat

ù Z$ú>ó þ>ÿ ü76 ù m o!5� ù � O g�Û (28)

V. ENHANCED BMA

Define 8>ô asthe numberof errorsin the MRB, anddefine8:9 as the numberof errorsin the control band.Fig.2 depicts
the conceptof BMA( ���
� ��� ). ; <= > ? @A B CDE F G HIJ KL MNO PQ

Fig. 2. Conceptof BMA( R$S�TVUXW ).

In this section,we develop the enhancedBMA( �
�����'� ). To
describethe procedureclearly, we assume�TQø� . We apply
the PSC to all the simulationsbelow. The thresholdcan be
selectedbasedon (27) and (28) such that a controllederror
floor is allowed. In the following simulations,we selectthe
thresholdsuchthat no falsealarmevent is observed.
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Fig. 3. Conceptof ÒÔÓÖÕØ×(Ù/Ú&ÛÝÜXÞ:ß with enhancedmatching.

A. BMA( àâáäãÝåçæ ) with Enhanced Matching è EBMA( à'áéãêåëæ ) ì
1) Algorithm: Figure 3 depictsan enhancedíXîðïòñ$àâáäãóåæ'ô è$õ íXîðïXñ�àâáäã7åöæ'ô ì . Define the region of the first ã2å÷æ

positionsin the orderedsequenceø:ù as í . If ãúåûæ remains
small, with high probability, í is error free, especiallyfor
long codes.We first find the MRB of ø:ù without including
any position in í . Thenwe constructa vector üêý by placing
this MRB in the first æ positions of ü ý , moving region í
to positionsfrom æòþûÿ to ã of ü ý (as the control band),and
placingtheremainingpositionsof ø:ù in thepositionsfrom ã þ ÿ
to � of ü ý . Denotethe correspondinggeneratormatrix as

� ý
and the hard decisionof ü ý as � ý . It follows that with high
probability, the control bandof ü ý is error free (i.e �����
	 ).

Basedon ü , õ íXîðïXñ�à'áéã å æ'ô is performedin two stages.
Define ��� as the numberof errors in the MRB, and define��� as the numberof errors in the control band. In stage1,íXîðïòñ$àâáäãóå æ'ô is performedto correctall the error patterns
with ���
��� à�� or ������������������	�� . In this stage,all the
MRB error patternswith Hamming weight 2 are stored in
thecorrespondingboxesfollowing theproceduresdescribedin
[3]. Theseboxesare accessedin stage2, wherean enhanced
matching is usedto correct most of the error patternswith�
� � ������� � ��	�� or �
� � ������� � ��	�� . Define  �ÿ and  "! as
two parametersusedfor enhancedmatching,where 	#�$ �%&�æ å(' and 	)�* ! � æëå+� . Define , % and , ! as the position
index of the MRB error patternthat hasbeenstoredin a box
in stage1. The enhancedmatchingconsistsof two steps.

Define -.%/á.-/! á0-21 astheerrorpositionsof aMRB errorpattern
with Hammingweight 3. In the first step,we generatethe setï of all theMRB errorpatternswith Hammingweight3 such

that  %43 - %53 - !63 - 163 æ . For each 7 198 ï , there may
be a box : initialized in stage1, such that for any MRB
error pattern 7�; stored in : , the positions from æ to ã of� ý=<�> ñ?7 1@< 7�;êôBA � ý.C are all zero. We denotethis type of
matchingas 0-matching.We then uniquely processeachof
the MRB error pattern 7 1D< 7�; . It is readily observed that
if � � �E� and � � �F	 , then ü is correctableprovided that,HG ã
1DIJ �% , where,HG ã
1 is the positionof the third MRB error
of üêý .

Define -0%/á0-/!:á.-/1 á0-2K as the error positionsof a MRB error
pattern with Hamming weight 4. In the second step, we
generateall the MRB error patternswith Hammingweight 4
suchthat  L! 3 -0% 3 -/! 3 -/1 3 -2K 3 æ . We perform the same
0-matchingasdescribedabove. It follows that if � � ��� and�M�N��	 , then ü ý is correctableprovided ,HG ã 1 I$ ! .

Note that in stage 2 of the enhancedmatching, we try
to approachthe decodingcapability of BMA(3) with much
lesscandidatesprocessedthan for BMA(3). Furthermore,the
memoryusedfor theenhancedmatchingis thesameasthatof
BMA(2). It is readily seenthat both the decodingcapability
and the computationcomplexity of the secondstagedepend
on  % and  ! . The smaller  % and  ! are, the better the
performanceis. However, thecomputationcomplexity of stage
2 increasesrapidly as  % and  ! decrease.Thesevaluesare
selectedsothat thecomplexity of stage2 remainscloseto that
of stage1.

2) Computation Complexity: Definethe maximumnumber
of boxesvisited in stage1 as � ý.O % . Definethemaximumnum-
berof boxesvisited in thefirst stepandsecondstepof stage2
as � ý.O !P% and � ý.O !0! , respectively. Definethe maximumnumber
of boxes visited in EBMA( àâáäã åûæ ) as � ýQO RSRUTWVYX[Z\!PO ]_^a`cb . It
follows that� ý.O RUTWVYX[Z\!dO ]�^a`cb � � ý.O % þ � ý.O !P% þ � ý.O !�! á (29)

where � ý.O % � è ` % ìØþ è `! ì , � ýQO !P% � è `
^fe
g1 ì , and � ýQO !�! � è `
^fePhK ì .
As expected,� ý.O !P% and � ý.O !�! increaseexponentiallywith æVåi %
and æXåj ! .

3) Performance Analysis: In thefollowing analysis,we use
definitions closely following thoseof [14], [15]. Define kl�ñnmpo á0mq% ádrsr\r#á.mat�^U%äô as the hard decisionof the received vectorø , wheremauS�ðÿ if v
ul�w	 and mau[�
	 otherwise.Thereliability
of this hard decision is taken as xSuY�zy v{u_y . In the received
sequenceø , assume| transmissionerrorshave occurredand
thecorrespondingreliability valuesarereorderedin decreasing
order. For ÿw�~}���| , let ��� ñ?|�ô representthe } -th ordered
reliability value among | hard decisionerrors in a received
sequenceof length � , so that � % ñ?|�ôY��� ! ñn|�ôY��r\rsr �H� ñn|�ô . The
remaining� å5| reliability valuescorrespondingto the correct
harddecisionsarealsoreorderedin decreasingorder. For ÿ��� � � åj| , let ����ñ � å�|�ô representthe

�
-th orderedreliability

valueamongthe remaining � å�| correctharddecisionsin the
received sequenceof length � . It follows that �H%:ñ � å�|�ô5���! ñ � å�|�ôN��r\rsr ��t�^ � ñ � å�|�ô . Thedensityfunctionsof � � ñn|�ô and� � ñ � å�|�ô have beenexpressedin [14] and allow to evaluate
probabilitiesof the form �ëñn��� ñ?|�ô���� � ñ � å+|�ô�ô .



Definethe event ó&��� as

ó@�2�%Q+ú region
�

containsat leastoneerrorü$� (30)

and the event ó � O g Û as

ó � O g ÛÜQ+ú optimal candidateis not in the list

consideredby EBMA( �,��� ��� ) ü$� (31)

and the event ó@� � as

ó@� � Q}ú EBMA( ���
� �&� ) failsü (32)

Basedon the union boundand total probability, we obtainù Z$ú>ó@� � üTx ù mso'5� ù Z$ú>ó � O g ÛP� ó �2� üê ù Z9ú>ó � O g ÛP�l�ó ��� ü (33)

It follows that (seeFig.3)ù Z9úUó � O g�Û � ó@�2�Uü�Q ù Z9ú/8>ô tw� � 8:9 t "�ü (34)

ù Z9úUó � O g�Û �l�ó@�2�Uü�Q ù Z9ú/8>ô t
� � 8:9ÜQ�w�ü ù Z9ú 8Uô+Q��,��8 9)Qßw.�ö�p���
�T��� D ü ù Z9ú/8>ôyQ �,� 8:9ÜQ�w,�û�H���
�T�$�$`�ü9� (35)

From (34)-(35), the union boundin (33) can be computed
from the joint orderedstatisticsof �!eO � and �nev � [14], [15].

B. Biased-MRB-EBMA( ���
�)�&�4��� )
1) Algorithm: For theselectedvalues��D and � ` , thebiasing

methodof chapter4 can be usedto further improve perfor-
mancewhile the computationcomplexity increaseslinearly
with the numberof biasingiterations.

Figure4 depictstheconceptof biasedMRB ó ��� ý 0N�,���4��,7 , which basically consistsof two steps.In the first step,ó ��� ý 0N���
� ���,7 definedin Figure 3 is performed.In the
secondstep, we bias the MRB of h and repeatstage2 ofó ��� ý 0N���
�]���,7 iteratively as follows.

Definethe biasas the following binary randomvariable:� Q�� ���f� ��Q}"B=�� ��f� ��Q}"B=�� (36)

where � is a positive real value.
Define � � as the systematicparity checkmatrix generated

in step1 of biasedó �Y� ý�0 �����]�ñ�,7 . The first � columnsof�#� definesthe MRB of hU� . The last 1i�#� columnsof �#�
representthe identity matrix. Define � = 02ò < �Xò D �FEGEGEH�Xò]� J!D 7
with ò O Q q O  � . Theelementsof � arepermutedaccordingto
thereliability values

c ò O c , which definesa permutationd D . The
first � columnsof the matrix �#� arethenpermutedaccording
to d D , which definesa new matrix �|e� . Notethat thepermuted
first � columnsof �|e� still definestheMRB. Thecorresponding
generatormatrix : e � canbedirectly obtainedfrom � e� without
Gaussianelimination . Using the samepermutationas that
defined by �|e� and � � , we obtain hne� from h � . There is
the samenumberof errors in the MRB of h � and hRe� , but
in different positions due to permutation.The error patternú/8 ô Q�� � 8 9 Q�w � �H��� � z$� ` ü or ú/8 ô Q � � 8 9 Q�w � �p��� � z��KDBü
can not be correctedby ó �Y� ý�0N�,���s�}�,7 . However, after
permutation,it is possiblethat �p���
� of hne� is changedsuch

 ¡

¢£
¤¥

Fig. 4. Conceptof ÒW¦¨§/Û.©�ª�Ü Ó4«4ÒÖÜY¬ÔÒØÓÖÕÔ×#Ù/Ú&ÛÝÜXÞ Ú?§�ß .
that üêùý becomescorrectable.Sincewe only biastheMRB, we
call this algorithm í­-/®âã
��¯	åÖî±°úí÷å õ íXîðïòñ$àâáäã�å æ á0®âô è oríXî å õ íXîðïXñ�àâáäã	å æ á0®âô ì .

2) Performance Analysis: Thebiasamplitudeandthenum-
ber of iterations determinethe decodingcapability of BM-
EBMA( àâáéã2åûæ á�® ). We derive a lower bound �S�\²0³[O T[VYR of
BM-EBMA( àâáäã	å æ á0® ) by assumingthat all the error blocks
with �
� � ������� � �±	�� or �
� � �±���0� � �±	�� are correctable.
This is the bestperformancethat BM-EBMA( àâáéã å æ á0® ) can
achieve with any ® anda large enoughnumberof iterations.

It follows that� �\²0³[O T[V´^aRURUTWVYX[Z\!dO ]�^a`cb� �DvL��� � �µ'��0� � � ÿ¶� þ·�DvL��� � ��¸L��� � ��	�� (37)

As examplesof EBMA( à'áéã åúæ ) andBM-EBMA( à'áéã åúæ á0® ),
we considerthe binary imageof the (255,239)ReedSolomon
(RS) codeso that � � à¶	¹�"	 and æ6� ÿ{º!ÿ/à . Let ã7å�æ»� à à , % � æXå à¶	¶	 and  ! � æòåöÿ{	"	 .

The maximumnumberof boxesvisited by BMA( àâáäà à ) is� ý.O % �F¼ æ ÿ�½ þ¾¼ æ à"½J¿ à !.o{À Á.o (38)



andthemaximumnumberof boxesvisited in thesecondstage
of EBMA(Â ���
��� ) is

1U� r ` D  �1U� r `�` Q 
 � �w�KD� �  
 � �w� `Ã �Ä � ` <{Å �0�  � ` DcÅ ÆC< Q�� `�` Å ��` (39)

We observe that 1 � r ` D% �1 � r `X` Ä � 1 � r D , so that the com-
plexity of EBMA( ���
��� ) remainsof the sameorderas that of
BMA( ���
��� ) Ç note that 1U� r D Ä � � <dÅ D ` for BMA(3,22)È .

In Fig.5, we plot (33) for EBMA( ���
��� ) and (37) for
BM-EBMA( �����$����� ). We observe that the performanceof
EBMA( �,����� ) is betweenthatof BMA( ���
��� ) andBMA(

� ����� ),
while the lower boundof BM-EBMA( �,�����,�0� ) can approach
that of BMA(

� ���$� ).
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Fig. 5. Errorperformanceanalysisof EBMA( É/S2ÉcÉ ) andBM-EBMA( É/S2ÉcÉ/S�Ê )
for RS (255,239).

In Fig.6, we plot the correspondingsimulationresultsand
(33) for EBMA( �,����� ). We also plot the simulationresultsof
BM-EBMA( �����$����w,EG"/� ) with 20 iterations.

We observe that the upperboundof EBMA( �,����� ) is tight.
Simulation results show that EBMA( �����$� ) becomesmuch
better than BMA(2,22) with enhancedmatching. The per-
formance of BM-EBMA( ���
������w,EG"/� ) with 20 iterations ap-
proachesthe lower boundof BM-EBMA( ���
���,�0� ), andis very
closeto the performanceof BMA(3). Note that not only the
numberof candidatesconsideredby BM-EBMA( �,���$���Xw.EH" � )
with 20 iterationsis much smaller than that of BMA(3), but
the memory usedby BM-EBMA( �,�����,�Xw.EH" � ) is just a small
fraction of that usedby BMA(3).

C. Biased-Block-EBMA( �,���Ü�&�!�0� )

1) Algorithm: In this section,enhancedmatching is per-
formed with the biasing method. At each iteration, all the
positionsof h � arebiasedexceptthe CB. The biasedsymbols
of h � outsidethe CB are reorderedin decreasingreliability
values,which definesa permutationd D . The columnsof :­�
arepermutedbasedon d D whichdefinesapermutedmatrix :Te � .

4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

SNR

lo
g 10

(W
E

R
) 

P
list

 of BMA (2,22)
P

list
 of BMA (3,22)

Upperbound of EBMA(2,22),  k−J
1
=200, k−J

2
=100

P
low

 of BM−EBMA(2,22)
Simulated  EBMA(2,22),  k−J

1
=200, k−J

2
=100

Simulated  BM−EBMA(2,22,0.15), k−J
1
=200, k−J

2
=100,  20 it.

Fig. 6. Simulated error performance of EBMA( É/SËÉcÉ ) and BM-
EBMA( É/SËÉcÉ/S�Ì
ÍÏÎ.Ð ) for RS(255,239).

Gaussianelimination is thenperformedto put :Te � in reduced
echelonform in order to determinethe � MRIPs. A second
permutationdf` maybenecessaryto makethis reducedechelon
form matrix into amatrix :-g in systematicform. Thesequenceh � is permutedaccordinglyto form the vector hne� definedas
follows: h e� Qßd 2 k d 1 k hU� lHl E (40)

Then
��� ý 0N���
���$7 with 0-matchingandenhanced0-matching

can be performed on úU:-g>�Xhne� �Xd D �Cdf`Bü . We denote this al-
gorithm as

� �/���/8U5��}[ �?�BMF�ñ�}ó ��� ý 0N�,��� �S�!�0��7 Ç �ò� �ó �Y� ý�0N�,���%�&�4����7 È .
Note that in both BM-EBMA( �,���y� �4��� ) and BB-

EBMA( �����3�_�4��� ), eachiterationis independentof the others
so that it canbeperformedin parallel,offering a tradeoff with
respectto latency. Thepotentialimprovementbroughtby each
iterationdependson the magnitude� of

�
, �KD and � ` .

2) Performance Analysis: We derive the list error prob-
ability

ù � O g Û r Ñ[Ñ�JaÒUÒSÑam 3 ) ` r g J � r ÿ * of BB-EBMA( �,���s�}�4�0� )
with the biasingmagnitude� , assumingenoughiterationsare
performed.

BB-EBMA( ���
���T�4�0� ) containstwo stages.In thefirst stage,
BMA( �,���,�8� ) is performedon � . In thesecondstage,BMA(2)
with 0-matchingand enhanced0-matchingare performedon
the biasedsequencehne iteratively. Define ó ÑSÑ3D as

ó ÑSÑ3D QSú optimal candidateis not in the list considered

by Stage1 of BB-EBMA 0N�,���%�&�4����7
ü (41)

and ó Ñ[Ñ ` as

ó@ÑSÑ ` QSú optimal candidateis not in the list considered

by Stage2 of BB-EBMA 0N�,���%�&�4����7
ü (42)

It follows thatù � O g�Û r ÑSÑÜJpÒSÒUÑ�m 3 ) ` r g J � r ÿ * Q ù Z$ú>ó Ñ[Ñ�D and ó Ñ[Ñ `�ü (43)



Define ó ÑSÑ3D�D and ó Ñ[Ñ�D ` as

ó ÑSÑ3DXD Q+úUó ÑSÑ3D and ó&���Bü (44)

ó Ñ[Ñ�D `�QSúUó Ñ[Ñ3D and �ó@�2�Uü9� (45)

where ó@�2� wasdefinedin (30).
It follows from total probability thatù � O g Û r Ñ[Ñ�JaÒUÒUÑ�m 3 ) ` r g J � r ÿ * Q ù Z9úUó ÑSÑ3DXD and ó Ñ[Ñ `Bü ù Z9úUó Ñ[Ñ3D ` and ó Ñ[Ñ `�ü (46)

Assume { transmissionerrors have occurred in � . It is
readily derived thatù Z9úUó Ñ[Ñ�D `¾�91p5 ó Ñ[Ñ `Bü�Qù Z9ú{�H�$0H{K7 �w��� J `�021'�'{K7 and �HÓ$0H{K7 �w��g JpÔ 021_�ð{K7

and ��g J ��0A1'�ð{K7ê�w� D 0H{K7
and �HÕ�0G{K7��+� �j�,g JaÖ 0A1'�ð{K7n ���ü9� (47)

where ú
� � 0G{K7 ��� � J ` 0A1ñ��{97 and � Ó 0G{K7 �×� g JHÔK0A1ñ�&{K7�ü
definestheeventthatBMA( ��������� ) is in error, ú{� g J � 021Ü�ê{K7ê��4DB0G{K7
ü definestheevent thatfirst �p� � mostreliablepositions
are error free and ú
� Õ 0G{K7��j�ñ�±� g JpÖ$0A1i��{973 
��ü indicates
thatat eachiteration,thefirst � positionsalwayscontainmore
than 7 errorswhen the bias amplitudeis � . As a result, this
error block cannot be correctedby BB-EBMA( ���
� ���4�0� ).

When region
�

containserrors, enhanced0-matchingin
stage2 alwaysfails. Hencean error block is correctableonly
if BMA(2) of stage1 succeeds,or BMA(2) with 0-matching
of stage2 succeeds.Define ó ÑÜr Û as the event that thereare Ø
errorsin the region

�
, "8xµØ)x#�]��� .

It follows thatù Z9úUó Ñ[Ñ�D�D and ó Ñ[Ñ `�ü
Q g J �à Û æ D

ù Z$ú>ó Ñ[Ñ�D and ó ÑÜr Û and ó Ñ[Ñ `�ü
� ù Z9úUó Ñ[Ñ�D and ó ÑÜr D and ó ÑSÑ `�üQ ù Z9ú��H�$0H{K7ê�w��� J `$021��ð{K7 and �HÓ�0G{K7ê�j�,g JHÔ 0A1_�ð{97

and � D 0H{K7ê�j�,g J ��0A1'�ð{97ê�µ��`$0H{K7
and � Ô 0H{K7��(� ���,g J �$021��ð{K7n ���ü (48)

In (48), we use the fact that ó�ÑÜr D is the dominantevent
when region

�
containserrors,since

�
is the most reliable

region with small width �%�&� .ú
� D 0G{K7ê�j�,g J �,0A1 �_{97ê�µ��`$0H{K7
ü is the dominantevent that
the region

�
containserrors; ú
� Ô 0G{K7n�Ù� �w��g J ��021 ��{K7! (��ü

indicatesthat BMA(2) with 0-matchingfails at eachiteration.
Fig.7 depicts

ù � O g Û r Ñ[Ñ�JaÒUÑ�m 3 ) ` r g J � r ÿ * for thebinary image
of RS(255,239),with �}Q w,E w �,�Xw.EH"$�Xw,EG"/� , respectively, and�9����Qß��� . Weobservethatthelargerthebiasamplitudeis, the
smallerthe list error probability is. However, the convergence
of the iterative approachwith a large bias is slower than that
with a smallerbias [18].

In Fig.8,we plot thesimulationresultsof BB-EBMA( �,���!��4�Xw.EH" ) with 100 iterations, for the binary image of
RS(255,239),with � �Ú� D Q ��w$w , � �~�9`ïQ "Uw�w . For
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Fig. 7. List error probability of BB-EBMA( É/S�TÝUòW SËÊ ) for RS(255,239).

comparison,we plot the simulation result of the BIAS( �2Ø.� )-
IISR(�2Ø O )-BMA( �����-�ß�4���R�0� ), with biasing iteration number�2Ø.��Q ��w , iterative information set reduction (IISR)[17] it-
eration number �2Ø O Q �

, control band length ���y� Q ��� ,
IISR shift width � Q "�w , and biasing amplitude � Q w.EH"
[18]. This algorithm achieves the nearestMLD performance
reportedso far. We also plot the simulation results of the
ADP(�2Ø Ý.ÛUÛ?�/Ü �X�2ØÞOHI�I �/Ü ) combinedwith a hard decisiondecoder
(HDD), with the maximumouter iteration number ��Ø Ý0ÛUÛ?�/Ü QÝ w , inner iteration number �2ØÞOHI�I �/Ü Q ��w and the damping
coefficient ÞiQ�w,E w Ý [19]. This algorithmis the mostefficient
reportedsoft decodingdifferentfrom directMRB approaches.

We observe thatafter10 iterations,BB-EBMA( ���
�4�s�!�Xw,EG" )
outperforms BMA(3), BIAS(20)-IISR(3)-BMA(2,22,10,0.1)
and ADP(80, 50). After 100 iterations, we observe many
MLD errors as recordedin Table I. To efficiently reduce
the average computationcomplexity, we used the PSC of
Section III with the threshold ë Q ��w . The averagecom-
putation complexity of BIAS(20)-IISR(3)-BMA(2,22,10,0.1)
andBB-EBMA( �,���]���4��w,EG" ) are recordedin Table II, where
the samePSC thresholdis used for both algorithms.Since
MRB reprocessingalgorithmsarelist decodingalgorithms,the
complexitiesaredefinedasthemaximumandaveragenumbers
of candidates(or list sizes) per received word Y processed
by the algorithm at a given SNR value. We observe from
Fig.8 andTableII that the averagecomputationcomplexity of
BIAS(20)-IISR(3)-BMA(2,22,10,0.1) is close to that of BB-
EBMA( ���������4��w,EG" ) with 50 iterations.However the perfor-
manceof BB-EBMA( ����� ���4��w,EG" ) with 10 iterations is al-
readybetterthanthatof BIAS(20)-IISR(3)-BMA(2,22,10,0.1).
Note that both algorithms use the same size of memory.
Furthermore,BIAS(20)-IISR(3)-BMA(2,22,10,0.1) needs80
Gaussianeliminations,while BB-EBMA( �,���3�|�4��w,EG" ) with ��Ø
iterationsneeds�2Ø Gaussianeliminations.

We alsoconductedsimulationswith enhancedBMA for the



decodingof binary image of (460,420)ReedSolomoncode
definedon thefield :T^�0 � DÞ< 7 . Theconceptof enhancedBMA
with order " is depictedin Figure 9 in a similar manneras
that in Figure 3. In Figure 10, we plot the simulationresults
of
��� ��ó �Y� ý�0Þ"$���$���Xw.EH" ��7 with 10 iterationsand

�X� �ó ��� ý 0Þ"��
���,�Xw,EG"/�$7 with 15 iterations,with � �µ� D Q " � w$w ,�n��� ` Q���w$w andthethresholdë#Q "�w$w . We observethatafter
10 iterations,the performanceof

�Y� ��ó �Y� ý�0Þ"$���$���Xw.EH" ��7
can approachthat of

��� ý�0 ���
����7 , and the performanceof�ò� ��ó ��� ý 0Þ"$�����,�Xw.EH" ��7 with 15 iterationshasalreadybeen
better than that of

��� ý 0N�,�����$7 . Note that the memoryused
by the an enhanced

�Y� ý�0Þ"$���ê�&�,7 algorithmis the sameas
that of

��� ý 0Þ"��
�3�ð�,7 , which is muchsmallerthanthat used
by

��� ý 0N�,���]���,7 .
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ÍÏÎ ) for the decodingof RS(255,239).

TABLE I

PERCENTAGE OF MLD ERRORS

TABLE II

AVERAGE COMPUTATION COMPLEXITY
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Fig. 9. Conceptof DFEHGJIËÎ�S&TÝUXWLK with enhancedmatching.
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