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Abstract—In this paper, efficient methodsto improve the box
and matching algorithm (BMA) are presentedFirstly, an efficient
approach is intr oduced to terminate the decoding if a local
optimal candidate satisfies a probabilistic sufficient condition.
The false alarm probability associated with the use of the
probabilistic sufficient condition is also derived. Secondly by
constructing a control band which is assumederror free, the
matching capability of the BMA is enhanced. More precisely
the performance of BMA of order (i +1) is nearly achieved with
a small increasein complexity and no increasein memory with
respectto the BMA of order i. A tight performance analysis
is derived based on the theory of order statistics. An error
floor associatedeither with false alarms or with errors in the
control band is intr oduced,but this error floor can be controlled
using the analysis in both cases.Simulation results show that
the performance of the enhancedBMA for the decoding of the
RS(255,239)code with BPSK signaling over an AWGN channel
is about 0.1 dB away from that of maximum lik elihood decoding
at the word error rate (WER) 1072,

|. INTRODUCTION

The box and matchingalgorithm (BMA)[3] is an efficient
mostreliable basis(MRB) basedsoft decisiondecodingalgo-
rithm. TheBMA roughlyreduceghe computationatostof the
orderedstatisticdecoding(OSD) algorithm[1] by its squared
root at the expenseof memory In additionto consideringall
codevordsassociatedvith error patternsof Hammingweight
atmosti onthe MRB, the BMA with order; alsoconsidersall
codevordsassociatedvith error patternsof Hammingweight
at most 2; on the s most reliable positions (MRPs), with
s > k, wherek is the dimensionof the code.This algorithm
is referredto asBMA(i, s — k) andthe s — k valuesoutside
the MRB asthe control band (CB).

In order to reducethe averagecompleity, it is desiredto
know beforethe computatiorof a candidatevhetherit cannot
be optimal or hasa very low possibility to be optimal. This
is the casewhen it doesnot satisfy somedeterministicnec-
essarycondition (DNC) or probabilistic necessarycondition
(PNC) for optimality. It is also desiredto know prematurely
that a candidateis optimal or has a high probability to be
optimal. This is the casewhenit satisfiessomedeterministic
sufficient condition (DSC) or probabilisticsufficient condition
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(PSC)for optimality. DNCs andDSCsfor MRB list decoding
have beenstudiedin [1][5][6][7][8][9] basedon a principle
first introducedin [4]. A PNC was proposedin [10] and
its effectivenesswas shavn via simulations.DNCs and the
DSCscan reducethe averagecomplexity without degrading
the error performance.However, the existing ones are not
very efficient for long codesat practicalsignalto noiseratio
(SNR) as basedon the code minimum distance.PNCs can
reducethe computatiorcomplexity atthe price of performance
degradation,which may be not negligible, but needto be
properly analyzed[11].

To achiere better performance BMA(4, s — k) with larger
orderi is desired However, not only the numberof processed
candidatesbut also the memory size increaseexponentially
with i. Henceit is desiredto increasethe decodingcapability
of BMA(4, s— k) by consideringanadditionalsetof promising
candidatesinsteadof resortingto BMA(i + 1, s — k).

In this paper we firstintroducea PSCwhich greatlyreduces
the average compleity in all SNR regions. This PSC is
especiallyefficient for long codes.We also derive an upper
bound for the false alarm probability associatedwith this
PSC.Thenwe investigatea new methodto efficiently improve
the performanceof BMA(i,s — k), that can approachor
even outperform BMA(7 + 1,s — k) without increasingthe
memory size. We denotethis type of algorithm as enhanced
BMA(4, s—k). The PSCis usedin theenhance®MA(i, s—k)
to reducethe averagecomplexity.

Il. PRELIMINARY

Let C beabinary (n, k,dgr) linear block codeof lengthn
anddimensionk with minimumHammingdistancely defined
by its generatomatrix G. SupposeBPSK signalingis usedfor
transmissiorover an AWGN channebwith varianceNy /2. As-
sumethateachsignalhasunit enegy. Let v = (vg, vy, ...U5—1)
beacodevordin C'. This codevordis mappeddntoa sequence
of BPSKsignalse = (¢p, ¢1, -.-¢n_1), Wheree; = (—1)%. This
codesequence: is transmittedover the AWGN channel.Let
r = (ro,71,...Tn—1) be the receved vector In this case,the
reliability of the harddecisiond(r;) € F, associatedvith the



recevedsignalr; € R is simply proportionalto its amplitude
I

A. Most Reliable Basis

Finding the MRB is the first step to be performed in
MRB reprocessingype algorithms. The basic procedureis
the following:

1) Order the received symbols basedon their reliability
valuesin decreasingorder This order of receved symbols
definesa permutationr; .

2) Permutethe columnsof generatomatrix G basedon 7,
which definesa permutedmatrix G'. Gaussiareliminationis
thenperformedto put G’ in reducedechelonform in orderto
determinethe £ mostreliableindependenpositions(MRIPS).
A secondpermutationm, may be necessaryto male this
reducedechelonform matrix into a matrix G5 in systematic
form. The sequencer is permutedaccordinglyto form the
vectory definedasfollows:

@)

Define y,, asthe vector correspondingo the MRB, and
define y, as the vector correspondingto the least reliable
basis(LRB). Hence|ya,;| > |yar,;| for 0 < i < j < k, and
lyra| > |yry| for 0 <i' < j' <n —k. Let 2’ = [z),,2}]
be the hard decisionof y = [y, yL]-

Let H be the parity check matrix definedby the MRB.
The mostright n — k columnsof H form the identity matrix
andcorrespondo the LRB. Theleft £ columnscorrespondo
the MRB. In general,thesek columnsform a densematrix,
definedas Dy,.

y = m[m[r]].

[11. PROBABILISTIC SUFFICIENT CONDITION (PSC)

k €y is the true MRB
r ‘ ‘ error pattern
Ym YL , , ,
Vi | | z'=HD[y]=[z"y,2",]
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Fig. 1. Preliminaries

Let eps be the error patterncorrespondingo y within the
MRB. Definevectorz) = [z, ®e s, 2, ]. Definesy =zl -HT.
It is readily seenthats, consistsof the linear combinationof
the columnscorrespondingdo error positionswithin the LRB.
The Hammingweight of sg is the numberof error bits within
the LRB.

A columnof thedensematrix D;, canbe assumedo follow
a binomial distribution andwith high probability hasa weight
closeto (n — k)/2.

In a MRB-reprocessinglgorithm,alist L;,; of MRB error
patternse; is usedto producecandidatesWe assumethat
the patternse; are processedn a predefinedorder and that
a cost function has to be minimized. A pattern e; which
minimizesthis costfunction over all patterngprocessedbefore
e; is referredto asa local optimumof L;,;. For eache;, the
vectorz; = [z), De;,z} ] is formed,andtherelatedsyndrome
s; =z - HT is computedt follows that

>

J: eijFem,;

h]' D so (2)

S; =

Hences; is the summationof s andthe columnswheree;
ande,; aredifferent.Sincecolumnsin the densematrix Dy,
areassumedo follow a binomial distribution, thenwith high
probability s; hasa much larger Hammingweight than s, if
€; 75 €en.

In this paper we introduce a new PSC for MRB-
reprocessinglgorithmsas follows. Supposea local optimal
candidatecorrespondindo the MRB error patterne; is found
by a MRB-reprocessinglgorithm during reprocessinglf the
weight of s; is smallerthana thresholdT’, this local optimal
candidateis declaredto be optimal, and decodingcan be
terminated.The advantagesof this methodare : (1) a miss
eventdoesnotleadto adecodingerror; (2) thePSCcangreatly
reducethe averagecompleity; (3) the miss probability and
falsealarm probability can be derived basedon the theory of
order statistics.

The fact that the syndromecorrespondingo a vector with
no errorin the MRB hasin generalrelatively small Hamming
weightwasalsousedin [12][13]. A DSC usedfor reliability-
based syndrome decoding and a PSC used for minimum
weight syndromedecodingwere derived in [12]. However
both this DSC and this PSC still dependon the minimum
Hammingdistanceof the code.In [13], the syndromeweight
of the original received vectorwascomparedwvith a threshold
beforedecodingto determinewhetherthe MRB is error free
or not. If the MRB wasdeterminedo be error free,thenerror
positionsin the LRB wereflipped accordingto the syndrome.
Otherwise,a method basedon the OSD conceptwas used
to find the error positionswithin the MRB by processinga
list of candidatesdeterminedby the columnsof the parity
checkmatrix. Theefficiency of this decodingalgorithmhighly
dependson the thresholdas not only a falsealarm event but
also a miss event canleadto a decodingerror. Furthermore,
all the candidatesn a sublistare processedby thatalgorithm,
and no performanceanalysisis provided.

IV. PERFORMANCE ANALYSIS

A PSC can efficiently reduce the average computation
compl«ity. There are two types of events, however, which
are not desirablewhena PSCis used.Oneis the miss event,
andthe otheris the falsealarmevent.



To analyzethesetwo events, let us first define the PSC
chedkinglist L which containsonly the MRB error patterns
correspondingto all the local optimal candidatesin L.
Hence L is a random set, which dependson the receved
vector Definethe numberof MRB error patternsin L as|L)|.

In the following analysis,we assumee,; € L;., which
implies ey, € L sinceonly the degradationdueto the PSCis
consideredsee[11] to relatethis estimateto the performance
of a MRB-reprocessingilgorithm). AssumeBMA(7, s — k) is
used.All the eventsdefinedbelow are conditionedon a given
SNRvalue.

A. Miss Event

Define the Hammingweight of a vectorv aswg|[v]. Then
the missevent E,,, is definedas

}]e,-EL: (3)

The miss eventimplies that althoughthe optimal candidate
is within the searcHist, it cannot be declarecoptimal whenit
is processedFurthermorethereexists no MRB error pattern
e; in L, e; # ey, which satisfiesthe PSC.As a resultall the
candidatesn the list have to be processedHencethe miss
event doesnot degradethe error performance.

We provide a simpleupperbounaf the missingprobability:

Pr{E,} < Pr{wg[so] > T} 4)

Recall that wg[se] is the numberof errorsin the LRB,
which decreasesss the SNR increasesWith a properchoice
of the thresholdT’, Pr{E,,} canbecomevery small.

Sincethe misseventdoesnot degradethe performancewe
mainly focus on the false alarm event, which degradesthe
error performance.

B. False Alarm Event
Definethe setof MRB error patternsA asfollows

A={e;:e; €L, e; #ey, wyls;] <T}

(®)

The set A containsall MRB error patternsin L which arenot
the true MRB error patternbut satisfy the PSC. Define the
eventEy, 1 as

(6)

For E¢,,1, althoughthe optimal candidates in L, the related
syndromedoesnot satisfy the PSC, and there exists at least
one MRB error patterne; in L, e; # e, Which satisfiesthe
PSC.Hencethe relatedcodevord is erroneouslydeclaredto
be optimal.

Definethe setof MRB error patternsB asfollows

|A| >1 and ’wH[So] >T

B ={e;: e; € A, e; is processedeforee,s}  (7)
Definethe event E¢, » as
|B| >1 and U)H[So] <T (8)

For E¢, 2, althoughthe optimal candidateis in L and the
relatedsyndromesatisfiesthe PSC, there exists at leastone
MRB error patterne; in L, e; # ey, which satisfiesthe PSC

andis processedbeforeey,. In this casetoo, a decodingerror
occursalthoughthe optimal candidatés in L andsatisfieshe
PSC.Definethe falsealarmevent E¢, as

Efo = Efan UEfap 9)

Sinceevents Ey, 1 and Ey, » aredisjoint, it follows that
PT‘{Efa} = P’r‘{Efa,l} + PT{Efa,g} (10)

Pr{Ey,} is not easyto be evaluatedbecausethe list of
candidatexonsideredby BMA(¢, s — k) is arandomvariable,
which is not asstructuredasthat of OSD). However the list
of candidatexonsideredby BMA(i, s — k) is a subsetof that
consideredby OSD1), we can thereforeset an upperbound
of Pr{Ey,} for BMA(4, s — k) by deriving an upperboundf
(10) for OSDs), which is developedasfollows.

Definem asthe numberof errorsin the MRB. Using total
probability and basedon the assumptiorthat OSD¢) is used,
(10) canbe written as

Pr{Es} =Y [Pr{Efa1 | m = j}
7=0

+Pr{Efep | m=j}] - Prim =j} (11)
From (6), we obtain
Pr{Ef.1 | m = j}
= Pr{|A| >1 and wg[se] >T | m =5} (12)
From (8), we obtain
Pr{Efaz2 | m = j}
=Pr{|B|>1 and wg[se] <T | m =j} (13)
For a MRB error patterne; € L, e; # e, define
Po(j) = Priwn(si] <T | wr[so] > T, m = j}
= Pr{wgu®so] <T | wa[se] > T, m = j} (14)
whereu is definedas
u= Y b (15)
Ji e jFen,;
Define the binomial distribution as
N —-n
Pl = () )50 - p)Y (16)

The columnweight of h; in D, canbe well approximated
by P(wg[h;]|n — k,0.5) if n — k is large enough.This was
verified by simulation.Thenwp[u] canalsobe approximated
by P(wg[u]|n — k,0.5) regardlessof how mary columnsin
Dy, areinvolvedin the summationof (15).

Note that the weight of a columnin D, cannot be smaller
thandyg — 1, wheredy is the minimum Hammingdistanceof
the code.In fact the weight of u shouldrangefrom dg — [
to n — k if [ columnsareinvolvedin the summationof (15).
In the following, theseboundaryeffects are negglectedas of
minor influenceand allowing columnsof weight smallerthan
dg — 1 evenincreaseghe probability of a falsealarm.



From simulations, we obsere that wg[se] is also well
approximatedoy a binomial distribution P(wg[se]|n — k, p),
where the parameterp dependson the SNR, the number
of errorsm in the MRB, and is conditionedon the event
{wr[so] > T'}. However, to obtainthe distribution of wg[u®
so], we do not needto know the value of p asshavn in the
following.

Letw = u®sg = (11)1, w2, ...,wn,k), wherew; = w;® S0,i-
It follows that

Pr{u; =1} = % 17)
Pr{sg; =1} =p (18)
Pr{w; =1} = % (19)

Hence, since wg[u] is distributed as P(wg[u]|n — k,0.5),
wr[u @ so] hasthe samedistribution aswg[u] if wso] is
distributed as P(wr[so]|n — k, p), regardlessof the value of

p.
Thenbasedon (2) and (15), (14) canbe simplified as

Pto = Ppa(j) = Pr{wg[u] < T} (20)
For orderi reprocessingdefine
Ik
ROIEDY (l> J=0,1,00 (21)
=0
so that
Pr{|A| > 1| wu[so] >T, m=j}
<1- [ (-Pn)
it € ELtot
=1-[1- pfa]le(i)l—l
=Pr,.) (22)

Theinequalityin (22) follows from thefactthatwe consider
all the MRB error pattersin L;,; insteadof just thosein L.
Then (12) canbe upperboundedby

Pr{Eja;| m = j}

< Py - Pr{wnlse] >T| m=j}  (23)
To calculate Pr{|B| > 1 | wgl[so] < T, m = j}, we
use similar approximations.Note that when m = 0, en

is processedirst and no other MRB error pattern can be
processedbeforee,,. In this case|B| = 0. Otherwise we still
considerthe worst case,in which all the MRB error patterns
processedrom phase() to phasef) arein L.

Following the analysismethodsusedabove, we obtain

Pr{Bfaz2| m = j}

< P, Pr{wn[se] <T|m=j}  (24)

Then(11) canbe upperboundeds

PT‘{Efa}
< Py,..c) - Pr{wg[so] > T| m = 0} - Pr{m = 0}

+3 [P,y - Priwn(so] > T| m = j}

j=1
+ PL,..j) - Priwn[so] < T| m = j}] - Pr{m = j},
(25)

Pr{m = j} is computedfrom orderedstatistics[14][15].
for example,we readily obtain

Pr{E¢|0SD(2)}

< Pyp,..2) - Pr{iwg[so] > T| m = 0} - Pr{m = 0}
+[P\Lm(2)| - Pr{wpgl[so] > T| m =1}
+ Pip,..q1) - Pr{wr[so] < T| m =1}] - Pr{m = 1}
+Pr,..2) - Pr{m = 2} (26)

It follows that (26) canbe usedasanupperboundf Pr{E;,}
for BMA(1, s — k).

The error probability P4 of a MRB reprocessingtype
algorithm-A with PSC can be upper boundedby the union
boundas

Pa < Pyip + Piist + Pr{E;.}, (27)

where Py 1 p is the probability of an MLD errorand P;g; is
the probability that the transmittedcodevord is not in the list
consideredoy algorithm-A. It is desiredthat

Pr{Es.} < Purp + Piist (28)
V. ENHANCED BMA

Definee,, asthe numberof errorsin the MRB, and define
e. asthe numberof errorsin the control band.Fig.2 depicts
the conceptof BMA(4, s — k).

k s
MRB | z'
Error patterns e <i e=x X can be
considered by m any number
BMA (i) ~ e,te < 2i ——* between 0
e and s—k

Control band

Fig. 2. Conceptof BMA(i, s — k).

In this section,we developthe enhancedBMA(¢, s — k). To
describethe procedureclearly, we assumei = 2. We apply
the PSCto all the simulationsbelow. The thresholdcan be
selectedbasedon (27) and (28) suchthat a controlled error
floor is allowed. In the following simulations,we selectthe
thresholdsuchthat no falsealarmeventis obsened.
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Fig. 3. Conceptof BM A(2, s — k) with enhancednatching.

A. BMA(2, s — k) with Enhanced Matching (EBMA(2, s — k))

1) Algorithm: Figure 3 depictsan enhancedBM A(2, s —
k) (EBMA(2,s — k)). Define the region of the first s — k
positionsin the orderedsequence’ as B. If s — k remains
small, with high probability, B is error free, especiallyfor
long codes.We first find the MRB of r’ without including
ary positionin B. Thenwe constructa vectory; by placing
this MRB in the first k& positionsof y;, moving region B
to positionsfrom k£ + 1 to s of y; (asthe control band),and
placingtheremainingpositionsof r’ in the positionsfrom s+1
to n of y,. Denotethe correspondingjeneratormatrix as Gl
and the hard decisionof y; as z;. It follows that with high
probability, the control bandof y; is error free (i.e e, = 0).

Basedony, EBM A(2, s — k) is performedin two stages.
Define e,, asthe numberof errorsin the MRB, and define
e, asthe numberof errorsin the control band. In stagel,
BMA(2,s — k) is performedto correctall the error patterns
with {e,, < 2} or {e,, < 4;e. = 0}. In this stage,all the
MRB error patternswith Hamming weight 2 are storedin
the correspondingdpoxesfollowing the procedureslescribedn
[3]. Theseboxesare accessedn stage2, wherean enhanced
matchingis usedto correct most of the error patternswith
{em = 5; e. = 0} or {e,, = 6; e, = 0}. DefineJ1 andJ, as
two parametersisedfor enhancednatching,where0 < J; <
k—3 and0 < J, < k — 4. Definep,; andp» asthe position
index of the MRB error patternthat hasbeenstoredin a box
in stagel. The enhancednatchingconsistsof two steps.

Defineiy, is, i3 astheerrorpositionsof aMRB errorpattern
with Hammingweight 3. In the first step,we generatehe set
A of all the MRB error patternswith Hammingweight 3 such

that J; < iy < iy < i3 < k. For eache; € A, there may
be a box @ initialized in stagel, such that for any MRB
error patterneg storedin @, the positionsfrom k to s of
zy D [(e3 ®es) ® Gb] are all zero. We denotethis type of
matching as 0-matching.We then uniquely processeach of
the MRB error patterne; @ es. It is readily obsered that
if e,, = 5 ande. = 0, theny is correctableprovided that
poss > Ji, whereposs is the positionof the third MRB error
of Y-

Define iy, 1i2,143,74 asthe error positionsof a MRB error
pattern with Hamming weight 4. In the second step, we
generateall the MRB error patternswith Hammingweight 4
suchthat J; < iy < iy < i3 < iq < k. We performthe same
0-matchingas describedabove. It follows thatif e,, = 6 and
e. = 0, theny, is correctableprovided poss > Jo.

Note that in stage?2 of the enhancedmatching, we try
to approachthe decodingcapability of BMA(3) with much
lesscandidategprocessedhan for BMA(3). Furthermorethe
memoryusedfor the enhancednatchingis the sameasthat of
BMA(2). It is readily seenthat both the decodingcapability
and the computationcompleity of the secondstagedepend
on J; and J,. The smaller J; and J> are, the better the
performances. However, the computationcomplexity of stage
2 increasegapidly as J; and J, decreaseThesevaluesare
selectedsothatthe complexity of stage? remainscloseto that
of stagel.

2) Computation Complexity: Definethe maximumnumber
of boxesvisitedin stagel asny, ;. Definethe maximumnum-
ber of boxesvisitedin thefirst stepandsecondstepof stage?
asnp 21 andny 22, respectrely. Define the maximumnumber
of boxes visited in EBMA(2, s — k) asny pepma(2,s—k)- It
follows that

Ny EBMA(2,5—k) = Tb,1 + Np,21 + Np,22, (29)
wheren, = (¥) + (), 1 = (*5), andmy », = (*7%).
As expectedyy, 21 andng oo increasexponentiallywith k—.J;
andk — Js.

3) Performance Analysis: In thefollowing analysiswe use
definitions closely following those of [14], [15]. Define u=
(uo,u1,...,up—1) asthe hard decisionof the receved vector
r, whereu; = 1 if r; < 0 andu; = 0 otherwise Thereliability
of this hard decisionis taken as «; = |r;|. In the receved
sequencer, assumet transmissionerrors have occurredand
thecorrespondingeliability valuesarereorderedn decreasing
order For 1 < j < t, let §;(t) representhe j-th ordered
reliability value amongt hard decisionerrorsin a receved
sequencedf lengthn, sothat 81 (t) > Ba(t) > ...5:(t). The
remainingn — t reliability valuescorrespondindo the correct
harddecisionsarealsoreorderedn decreasingrdet For 1 <
I < n-—t, letv(n—t) representhe [-th orderedreliability
valueamongthe remainingn — ¢ correctharddecisionsin the
receved sequenceof length n. It follows that v, (n — t) >
Y2(n—t) > ..yn—¢(n—t). Thedensityfunctionsof 3;(t) and
~i(n — t) have beenexpressedn [14] and allow to evaluate
probabilitiesof the form P(5;(t) < vi(n —t)).



Definethe event £, as

E,. = {region B containsat leastone error}, (30)
andthe event Ej;5; as
Ey;s: = {optimal candidateis not in the list
considerecoy EBMA(2, s — k)}, (31)
andthe event E;, as
E;. = { EBMA(2, s — k) fails} (32)

Basedon the union boundand total probability, we obtain
Pr{Eg} < Pyrp + Pr{Ejis;; Eye} + Pr{Ejist; Epe } (33)
It follows that (seeFig.3)

Pr{Ejist; Epe} = Priem >3, e. > 1} (34)
Pr{Elist; Ebe} = P"'{em >7, ec= 0}

+Pr{e, =6, ec =0, poss > J1}

+Pr{e, =5, ec=0, poss> Jo}, (35)

From (34)-(35), the union boundin (33) can be computed
from the joint orderedstatisticsof ;s and ;s [14], [15].

B. Biased-MRB-EBMA(2, s — k, a)

1) Algorithm: FortheselectedraluesJ; andJz, thebiasing
methodof chapter4 can be usedto further improve perfor
mancewhile the computationcompleity increasedinearly
with the numberof biasingiterations.

Figure4 depictsthe conceptof biasedMRB EBM A(2, s —
k), which basically consistsof two steps.In the first step,
EBMA(2,s — k) definedin Figure 3 is performed.In the
secondstep, we bias the MRB of y and repeatstage?2 of
EBMA(2,s — k) iteratively asfollows.

Definethe bias asthe following binary randomvariable:

—a,

_ p=1/2
a_{ o

p=1/2
wherea is a positive real value.

Define H;, asthe systematigparity checkmatrix generated
in stepl of biasedEBM A(2, s — k). Thefirst k£ columnsof
Hy, definesthe MRB of y;. The last n — k columnsof H,
representhe identity matrix. Definew = (wq, w1, ..., wk—1)
with w; = y;+6. Theelementof w arepermutedaccordingo
thereliability values|w;|, which definesa permutationr; . The
first k columnsof the matrix H, arethenpermutedaccording
to 7y, which definesa new matrix H; . Note thatthe permuted
first k£ columnsof Hj still definegthe MRB. Thecorresponding
generatomatrix G, canbedirectly obtainedfrom H; without
Gaussianelimination . Using the same permutationas that
defined by H; and Hj, we obtain y; from y;. Thereis
the samenumber of errorsin the MRB of y;, and y;, but
in different positions due to permutation.The error pattern
{em = 6;e. = 0;pos3 < Jo} or {e,, = 5;e. = 0;posz < J1}
can not be correctedby EBM A(2,s — k). However, after
permutation,it is possiblethat pos; of yj is changedsuch

(36)

Find the MRB of the ordered
sequence 7'in the region from
sk to n—1; move the first sk
most reliable positions on the
control band region to obtain
vector Y,

Do stage 1 of
EBMA (2)

l

Do stage 2 of
EBMA (2)

l

Find optimal
candidate,
or iter>ITER?

Decoding
finish

‘ Vb

Bias this
region

l

iter ++

Fig. 4. Conceptof Biased — MRB — EBMA(2,s — k,a).

No biasing in
this region

thaty; becomesorrectableSincewe only biasthe MRB, we
call this algorithm Biased — MRB — EBM A(2, s — k,a) (or
BM — EBMA(2,s — k,a)).

2) Performance Analysis: The biasamplitudeandthe num-
ber of iterations determinethe decodingcapability of BM-
EBMA(2,s — k,a). We derive a lower bound Py, BpmE Of
BM-EBMA(2, s — k, a) by assumingthat all the error blocks
with {e,, = 6;e. = 0} or {e,, = 5;e. = 0} arecorrectable.
This is the bestperformancehat BM-EBMA(2, s — k,a) can
achieve with ary a anda large enoughnumberof iterations.

It follows that

IDlow,BM—EEBMA(Q,s—k)
Pr{e,m > 3;e. > 1} + Pr{e, > T;e. =0} (37)

As examplesof EBMA(2, s—k) andBM-EBMA(2, s—k, a),
we considerthe binary imageof the (255,239)ReedSolomon
(RS) codesothatn = 2040 andk = 1912. Let s — k = 22,
Ji =k —200 anng =k — 100.

The maximumnumberof boxesvisited by BMA(2, 22) is

— k k ~ 920.80
() ()=

(38)



andthe maximumnumberof boxesvisitedin the secondstage

of EBMA(2,22) is
k—J1 k—Jy
(57 (")

~ 220.33 + 221.90 — 222.32

Tp,21 + Np,22
(39)

We obsene that ng 21 + np,22 &~ 3ns,1, SO that the com-
plexity of EBMA(2,22) remainsof the sameorder asthat of
BMA(2,22) (notethatn, ~ 23012 for BMA(3,22)).

In Fig.5, we plot (33) for EBMA(2,22) and (37) for
BM-EBMA(2,22,a). We obsere that the performanceof
EBMA(2, 22) is betweerthatof BMA(2, 22) andBMA(3, 22),
while the lower bound of BM-EBMA(2, 22, a) canapproach
that of BMA(3, 22).
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Fig.5. Errorperformancenalysisof EBMA(2, 22) andBM-EBMA(2, 22, a)
for RS (255,239).

In Fig.6, we plot the correspondingsimulationresultsand
(33) for EBMA(2, 22). We also plot the simulationresultsof
BM-EBMA(2, 22,0.15) with 20 iterations.

We obsenre that the upperboundof EBMA(2, 22) is tight.
Simulation results shav that EBMA(2,22) becomesmuch
better than BMA(2,22) with enhancedmatching. The per
formance of BM-EBMA(2,22,0.15) with 20 iterations ap-
proacheghe lower boundof BM-EBMA(2, 22, a), andis very
closeto the performanceof BMA(3). Note that not only the
numberof candidatesconsideredoy BM-EBMA(2,22,0.15)
with 20 iterationsis much smallerthanthat of BMA(3), but
the memoryusedby BM-EBMA(2,22,0.15) is just a small
fraction of that usedby BMA(3).

C. Biased-Block-EBMA(2, s — k, a)

1) Algorithm: In this section,enhancedmatchingis per
formed with the biasing method. At eachiteration, all the
positionsof y, arebiasedexceptthe CB. The biasedsymbols
of y, outsidethe CB are reorderedin decreasingeliability
values,which definesa permutations;. The columnsof G,
arepermutecbasen m; which definesapermutedmatrix Gj,.

0
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—¢— Simulated BM-EBMA(2,22,0.15), k*J1=200‘ k*J2=100, 20it.
T
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Fig. 6. Simulated error performance of EBMA(2,22) and BM-
EBMA(2,22,0.15) for RS(255,239).

Gaussiareliminationis then performedto put G}, in reduced
echelonform in orderto determinethe £ MRIPs. A second
permutationr, maybenecessaryo make thisreducedechelon
form matrixinto amatrix G in systematidorm. Thesequence
ys is permutedaccordinglyto form the vectory; definedas
follows:

% = 7T2[7T1[Yb]]- (40)

Then BM A(2,22) with 0-matchingandenhanced-matching
can be performedon {G;,y;, 1, m2}. We denotethis al-
gorithm as Biased — block — EBM A(2,s — k,a)(BB —
EBMA(2,s — k,a)).

Note that in both BM-EBMA(2,s — k,a) and BB-
EBMA(2, s — k, a), eachiterationis independenof the others
sothatit canbe performedin parallel,offering a tradeof with
respecto lateng. The potentialimprovementbroughtby each
iteration dependon the magnitudea of 6, J; and Js.

2) Performance Analysis. We derive the list error prob-
ability Fjis¢, BB-EEBMA(2,5—k,a) Of BB-EBMA(2,5 — k,a)
with the biasingmagnitudea, assumingenoughiterationsare
performed.

BB-EBMA(2, s—k, a) containgwo stagesin thefirst stage,
BMA(2, s—k) is performedon z. In thesecondstage BMA(2)
with 0-matchingand enhanced-matchingare performedon
the biasedsequencey’ iteratively. Define Egp; as

Epp; = {optimal candidates not in the list considered
by Stagel of BB-EBMA(2,s — k,a)} (41)

and Egpy as

Egpps = {optimal candidateis not in the list considered
by Stage2 of BB-EBMA(2,s — k,a)} (42)

It follows that

Piist, BB-EEBMA(2,5—k,a) = Pr{Epp1 and Eppa} (43)



Define Egpi11 and Egpia as

Egpi1 = {Epp1 and E.} (44)

Eppi2 = {Egp1 and E.},

where Ep, wasdefinedin (30).
It follows from total probability that

(45)

Piist, BB—-EEBMA(2,5—k,0) = Pr{EBp11 and Epp»}
+Pr{Egpi2 and Epp»} (46)

Assume j transmissionerrors have occurredin z. It is
readily derived that

Pr{Epp12 and Epps} =

Pr{B3(j) > vk—2(n — j) and B5(j) > vs—a(n —j)
and vs—x(n — j) > B1(Jj)
and 37(j) —a > vs—¢(n — j) + a},

where {83(j) > ve—2(n —§) and Bs(j) > ve—s(n — j)}
definesheeventthatBMA(2, s—k) isin errot, {ys—x(n—j) >
B1(j)} definesthe eventthatfirst s — k mostreliable positions
are error free and {87(j) — a > vs_¢(n — j) + a} indicates
thatat eachiteration,the first s positionsalways containmore
than 7 errorswhen the bias amplitudeis a. As a result, this
error block cannot be correctedby BB-EBMA(2, s — k, a).

When region B containserrors, enhanced0-matchingin
stage2 alwaysfails. Hencean error block is correctableonly
if BMA(2) of stagel succeedspr BMA(2) with 0-matching
of stage2 succeedsDefine Eg; asthe eventthattherearet
errorsin theregion B, 1 <t < s — k.

It follows that

P’I‘{EBBH and EBB2}
s—k

= ZPT{EBBI and EB,t and EBBQ}
t=1

> Pr{Epp1 and Ep; and Egp»}

= Pr{ B3(j) > vk—2(n —j) and B5(j) > vs—a(n —j)
and B1(j) > vs—k(n — j) > B2(j)
and B4(j) —a>vs-3(n—j) +a}

In (48), we usethe fact that Ep ; is the dominantevent
whenregion B containserrors,since B is the most reliable
region with small width s — k.

{B1(§) > vs—r(n — j) > B2(j)} is the dominantevent that
theregion B containserrors;{$4(j) — a > vs—3(n — j) + a}
indicatesthat BMA(2) with 0-matchingfails at eachiteration.

Fig.7 depictsPy;st, pB—EBMA(2,5—k,a) fOr thebinaryimage
of RS(255,239)with & = 0.05,0.1,0.15, respectiely, and
s—k = 22. We obsenrethatthelargerthe biasamplitudeis, the
smallerthe list error probability is. However, the corvergence
of the iterative approachwith a large biasis slower thanthat
with a smallerbias[18].

In Fig.8, we plot the simulationresultsof BB-EBMA(2, s —
k,0.1) with 100 iterations, for the binary image of
RS(255,239),with k¥ — J; = 200, k — Jo» = 100. For

(47)

(48)
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Fig. 7. List error probability of BB-EBMA(2, s — k, a) for RS(255,239).

comparisonwe plot the simulation result of the BIAS(it;)-
[ISR(it;)-BMA(2, s — k, p,a), with biasing iteration number
ity = 20, iterative information set reduction (IISR)[17] it-
eration numberit; = 3, control band lengths — & = 22,
ISR shift width p = 10, and biasing amplitudea = 0.1
[18]. This algorithm achieres the nearestMLD performance
reportedso far. We also plot the simulation results of the
ADP(itouter, itinner) COMbinedwith a hard decisiondecoder
(HDD), with the maximum outer iteration numberit,¢er =
80, inner iteration numberit;,,.. = 50 and the damping
coeficient o = 0.08 [19]. This algorithmis the mostefficient
reportedsoft decodingdifferentfrom direct MRB approaches.

We obsenethatafter 10 iterations BB-EBMA(2, s —k,0.1)
outperforms BMA(3), BIAS(20)-1ISR(3)-BMA(2,22,D,0.1)
and ADP(80, 50). After 100 iterations, we obsere mary
MLD errors as recordedin Table |. To efficiently reduce
the average computationcompleity, we used the PSC of
Sectionlll with the thresholdT = 20. The averagecom-
putation compleity of BIAS(20)-1ISR(3)-BMA(2,22,D,0.1)
and BB-EBMA(2, s — k,0.1) arerecordedin Tablell, where
the samePSC thresholdis usedfor both algorithms. Since
MRB reprocessinglgorithmsarelist decodingalgorithms the
compl«ities aredefinedasthe maximumandaveragenumbers
of candidates(or list sizes)per receved word r processed
by the algorithm at a given SNR value. We obsene from
Fig.8 andTablell thatthe averagecomputationcompleity of
BIAS(20)-1ISR(3)-BMA(2,22,D,0.1) is closeto that of BB-
EBMA(2, s — k,0.1) with 50 iterations.However the perfor
manceof BB-EBMA(2,s — k,0.1) with 10 iterationsis al-
readybetterthanthatof BIAS(20)-1ISR(3)-BMA(2,22,D,0.1).
Note that both algorithms use the same size of memory
Furthermore,BIAS(20)-1ISR(3)-BMA(2,22,100.1) needs80
Gaussiareliminations,while BB-EBMA(2, s — k,0.1) with 4t
iterationsneedsit Gaussiareliminations.

We alsoconductedsimulationswith enhancedMA for the



decodingof binary image of (460,420)Reed Solomoncode
definedon the field GF(219) . The conceptof enhancedMA
with order1 is depictedin Figure 9 in a similar manneras
thatin Figure 3. In Figure 10, we plot the simulationresults
of BM — EBM A(1,22,0.15) with 10 iterationsand BB —
EBM A(1,22,0.15) with 15 iterations,with k£ — .J; = 1700,
k—Jo = 200 andthethresholdl’ = 100. We obsere thatafter
10 iterations,the performanceof BM — EBM A(1,22,0.15)
can approachthat of BM A(2,22), and the performanceof
BB—-EBMA(1,22,0.15) with 15iterationshasalreadybeen
betterthanthat of BM A(2,22). Note that the memoryused
by the an enhancedBM A(1, s — k) algorithmis the sameas
thatof BM A(1, s — k), which is muchsmallerthanthatused
by BMA(2,s — k).
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Fig. 8. BB-EBMA(2, s — k,0.1) for the decodingof RS(255,239).

Qa

TABLE |
PERCENTAGE OF ML D ERRORS

SNR

Percentage of
errors which
are MLD errors

4.0 14.25 4.75

70% | 50% 10%

TABLE I
AVERAGE COMPUTATION COMPLEXITY

SNR Average computation complexity
4.0 4.25 4.5 4.75

BIAS(20)-TISR(3)~ . . = op7 196
: : 5,250 | 15, 267, 122

BMA (2, 22, 10, 0. 1) 138,867,900 | 99, 101,977 | 37, 745, 250 | 15

BB-EBMA (2, 22, 0. 1 o
¢ ) 36, 602, 064 |26, 520, 225 | 9,637,408 | 4,620, 123
Iteration = 10

Tteration = 50 |158, 687, 831|112, 816, 329| 38, 325,993 | 19, 189, 098
Iteration = 100|310, 253, 129|217, 908, 49| 73, 651, 295 | 37, 269, 003
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with high probability,
this region is error free
‘47 MRB ——
Stage 1: k Bs
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BMA (1, s—k) €n S « between 0
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Fig. 9. Conceptof BM A(1, s — k) with enhancednatching.
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Fig. 10. Simulationresultsfor the decodingof (460, 420) ReedSolomon
codeover GF(210) with enhancedBM A(1).



