Effects of the Generation Size and Overlap
on Throughput and Complexity
In Randomized Linear Network Coding

Yao Li, Student Member, IEEEEmina Soljanin,Senior Member, IEEEand Predrag Spasojevilember, IEEE,

Abstract—To reduce computational complexity and delay in
randomized network coded content distribution, and for sone
other practical reasons, coding is not performed simultaneusly
over all content blocks, but over much smaller, possibly owap-
ping subsets of these blocks, known as generations. A penalbf
this strategy is throughput reduction. To analyze the throwghput
loss, we model coding over generations with random generatn
scheduling as a coupon collector's brotherhood problem. Tis

model enables us to derive the expected number of coded patke
needed for successful decoding of the entire content as well

as the probability of decoding failure (the latter only when
generations do not overlap) and further, to quantify the tradeoff
between computational complexity and throughput. Interesingly,

The introduction of network coding in P2P content distri-
bution systems brings about the issue of computational com-
plexity. Consider distributing a file consisting &f fragments,
each made up ofl symbols from a Galois field7F(q) of
sizeq. It takesO(Nd) operations inGF'(¢q) to form a linear
combination per coded packet, a®{ N3 + N2d) operations,
or, equivalently, O(N? + Nd) operations per information
packet, to decode the information packets by solving linear
equations. According to the implementers of UUSee [3], a
peer-to-peer video streaming application using randodnize
linear coding, even with the most optimized implementation

with a moderate increase in the generation size, throughput going beyond512 fragments in each generation risks taxing

quickly approaches link capacity. Overlaps between genet@ns
can further improve throughput substantially for relative ly small
generation sizes.

Index Terms—network coding, rateless codes, coupon collec-

tor's problem

|. INTRODUCTION

a low-end CPU, typically used in power-efficient notebook
computers.

In an effort to reduce computational complexity, inforroati
packets are partitioned into disjoint subsets referred 40 a
generationsand coding is done only within generations. This
approach scales down the encoding and decoding problem
from the whole file sizeN to the generation size times the

A. Motivation: Coding over Disjoint and Overlapping Genernumber of generations. The concept of generation in network

ations

coding was first proposed by Chou et al. in [4] to handle

Random linear network coding was proposed in [1] foihe issue of network synchronization. Coding over randomly
“robust, distributed transmission and compression of rinfoscheduled generations was first theoretically analyzed ay-M
mation in networks”. Subsequently, the idea found a pla@ounkov et al. in [5]. Random scheduling of generations
in a peer-to-peer(P2P) file distribution system Avalanc2je [Provides the “rateless” property which reduces the need for
from Microsoft. In P2P systems such as BitTorrent, conteftceiver feedback and offers resilience to various erasure
distribution involves fragmenting the content at its seyrcpPatterns over the communication link. In addition, in therpe
and using swarming techniques to disseminate the fragmei@Peer content distribution setting, random schedulmgoi
among peers. Systems such as Avalanche, instead, circu@@e degree a good approximation when global co-ordination
linear combinations of content fragments, which can be gedmong peers is impractical.
erated by any peer. The motivation behind such a scheme i§Vith random scheduling of generations, coded packets ac-
that, it is hard for peers to make optimal decisions on tiéimulate faster in some generations than in others, eveh if a
scheduling of fragments based on their limited local visio@enerations are scheduled equally probably. While waiting
whereas when fragments are linearly combined at each no¢ last generation to become decodable, redundant parkets
topology diversity is implanted inherently in the data flow@ccumulated in other generations. The situation is agtgeva

and can be exploited without further co-ordination.
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as the generation size decreases. One way to recover some
of the throughput loss due to random scheduling without
losing the benefits of reduced generation sizes is to allow
generations to help each other in decoding. If the genemstio
are allowed to overlap, after some of the “faster” generatio
are decoded, the number of unknown variables can be reduced
in those generations sharing information packets with the
decoded ones, which in turn reduces the number of coded
packets needed to decode those generations, and enhagces th
throughput as a result. Our goal is to characterize the tsffifc
generation size and overlaps on the throughput and contplexi



in randomized linear network coding. in itself of independent interest for general readers ésted
in coupon collecting problems.
In Sections V and VI, results from the previous two sections
B. Related Work are combined to enable the analysis of the effects of gdoerat
The performance of codes with random scheduling &fze and overlaps on the decoding latency/throughput dhgod
disjoint generations was first theoretically analyzed ihlf$ over disjoint or overlapping generations.
Maymounkov et al., who referred to them elsunked codes  Section V studies the effects of generation size on the code
Chunked codes allow convenient encoding at intermediat@oughput over a BEC channel for coding over disjoint gen-
nodes, and are readily suitable for peer-to-peer file dissesrations. Section V-A characterizes the mean and variahce o
ination. In [5], the authors used an adversarial schedule thg decoding latency (the number of coded packets traremitt
the network model and characterized the code performangsil successful decoding) fdinite information lengthsand
under certain restrictions on the chunk(generation) sizerw Section V-B provides a lower bound for the probability of
the length of the information to be encoded tends to infinitylecoding failure. A large gain in throughput is observed mhe
Coding with overlapping generations was first studied ithe generation size increases frdnto a few tens.
[6] and [7] with the goal to improve throughput. Reference In Section VI, therandom annex codés proposed as
[7] studied a “head-to-toe” overlapping scheme in whichn effort to improve code throughput by allowing random
only contiguous generations overlap for a given number oferlaps among generations. Section VI-C lists an algorith
information packets, and analyzed its asymptotic perfoiwea providing precise estimation of the expected decodingqitate
over a line network when the length of information goes tof the random annex code. The algorithm is based on the
infinity. Another overlapping scheme with a grid structurasw analysis of the overlapping structure in Section VI-B anel th
proposed in [6], analyzed for short lengths (edggenerations) results from the extended collector’'s brotherhood in ®ecti
and simulated for practical lengths. When properly designdV. Section VI-D demonstrates the effects of overlap sizes
these codes show improved performance over codes with code throughput is shown through both numerical com-
disjoint generations. In our work, we offer an analysis gfutation and simulations. One of our interesting obseowati
coding over disjoint and overlapping generations for filite¢ is that overlaps between generations can provide a tradeoff
practically long information lengths. between computational complexity and decoding latency. In
addition, without increasing the generation size (and &enc
computational complexity), it is still possible to improve
code throughput significantly by allowing overlaps between
In this work, coding with both disjoint and overlappinggenerations.
generations together withandom generation scheduling
studied from a coupon collection [8] perspective. PreMpus || copine OVER GENERATIONS THE GENERAL MODEL

existing resuilts from the classical coupon collectorshen, In this section, we describe a general random coding scheme
along with our extensions, enable us to characterize the cod ' 9 9

performance with finite information lengths, from which th&Ve' generatlons. Generations do_not have to be_ disjoint or o
asymptotic code performance can further be deduced. equal size, an_d random schec_jullng of ge_neratlons does not
Section Il introduces the general model for coding ng}aye to be uniform. We describe the coding scheme over a

generations, disjoint or overlapping, over a unicast (ﬂ;«'naumcaSt link.
erasure) link, and characterizes the computational cast fo _ _
encoding and decoding. A. Forming Generations

Section Il derives several results concerning linear inde The file being distributed” is represented as a set Af
pendence among coded packets from the same generaigfdrmation packetsp:, ps, ..., pn. Each information packet
Such results serve to link coupon collection to the decoding a d-dimensional column vector of information symbols in
of content that has been encoded into multiple generatiogs|ois FieldGF(q). Generations are non-empty subsetsFof

C. Organization and Main Contribution

Included (Claim 1) is a very good upper bound on the Suppose that generations(71, Gs, ..., G,, are formed s.t.
distribution of the number of coded packets needed for Aa— U;'L:1Gj- A coding scheme is said to be non-overlapping
specific generation for successful decoding. if the generations are disjoint, i.evi # j, G; NG, = 0;

Section IV introduces the coupon collector’s brotherhoastherwise, the scheme is said to be overlapping. The size
problem and its variations that can be used to model codipf) each generatiorty; is denoted byg;, and its elements

over generations. Probability generating functions (Teews 1) () »U) For convenience, we will occasionally also
2 and 4) and moments (Corollaries 3 and 5) of the number&) eG; to denote the matrix with columryéj),pgj), N ,pg)_

samplings needed to collect multiple copies of distinctomms

are derived for the random sampling ofimite set of coupons )

in Section IV-A. Relevant asymptotic results on expectéd: Encoding
values and probability distributions in existing litereguare In each transmission, the source first selects one ofithe
recapitulated in Section I1V-B for performance charactgion generations at random. The probability of choosing germrat

of coding over generations in the later part of the work. Th@; is p;, > p; = 1. Let p = (p1,p2,...,pn). Once
section is presented in the coupon collection language sindgenerationG; is chosen, the source chooses a coding vector



e = [e1,e2,...,¢e4]", with each of they; components chosentake up [log, n] + g;[log, ¢| bits. Meanwhile, the data in
independently and equally probably fro@F(q). A new each coded packet comprigglog, ¢| bits. The generation
packetp is then formed by linearly combining packets fronsize makes a more significant contribution to packet ovethea
Gibyep=Y%, eip,gj) = e-G; (G, here denotes a matrix). and such contribution is non-negligible due to the limitexs
The coded packep is then sent over the communicatior(~ a few KB) of transmission packets in practical networks.
link to the receiver along with the coding vecter and This gives another reason to keep generations small, Iseside
the generation indey. Figure 1 shows a diagram of thereducing computational complexity.
communication between the source and the receiver. The

generations shown in this example are chosen to be disjoiat, computational Complexity

but this is not necessary. The computational complexity for encoding is
File at Server O(dmax{g,;}) per coded packet for linearly combining
G, G, G, G, the g; information packets in each generation (recall hasd
the number ofGF'(q) symbols in each information packet,
P V1p2 " ps Vpi 2 pa 2 ps ey O lpy s o, D 1p, @ ps as defined in Section II-A). For decoding, the largest number

of unknowns in the systems of linear equations to be solved
/e, BEC(e) is not more thanmax{g,}, and therefore the computational
eG, complexity is upper bounded 9 ((max{g;})?+d max{g;})

per information packet.

;} F. Decoding Latency

In this paper, we focus on the tradeoff between the computa-

(). Q] . . .
P2 tPs tional complexity and thelecoding latencyf these codes over
P Py +p;® Py unicast links with erasures. Decoding latency here is défine
p, D py) p,? P19 +py®) 4p D py ™ as the number of coded packets transmitted until successful

decoding of all the information packets, anderheadis the

difference between the number of information packets and

Fig. 1. A file divided into N = 12 fragments andn = 4 (disjoint) the decoding latency. We assume a memoryless BEC with a

generations containing. = 3 fragments each is available for distribution constant erasure rate Since our coding scheme is rateless,

2;;2§u|5:£"§;ng;teigﬁg’_er collects random linear combinatiof randomly o5y coded packet is statistically of the same importamzg, a
so the average decoding latency is inversely proportiomal t
the achievable capacityl — ¢) of the link. The throughput of

C. Decoding the code is inversely proportional to the decoding latermey f

Decoding starts with any generatiafi; for which the given information length.
receiver has collecteg; coded packets with linearly inde-
pendent coding vectors. The information packets making up Ill. COLLECTING CODED PACKETS AND DECODING

this generation are decoded by solving a systemg;ofnear A generationG; is not decodable until the number of
equations inGF'(g) formed by the coded packets on one sidgnearly independent equations collected f6f reaches the

and the linear combinations of the information packets lay tl’humber of its information packets not yet resolved by defq;@d|
coding vectors on the other. Since generations are allowedother generations. The connection between the number of
overlap, a decoded information packet may also participatecoded packets collected and the linear independence among
other generations, from the equations of which the infoilomat these coded packets has to be established before we can
packet is then removed as an unknown variable. Consequergpedict the decoding latency of codes over generationgyusin
in all the generations overlapping with the decoded gengfe collector’s brotherhood model that will be discussethin
ations, the number of unknown packets is reduced. Asnaxt section.

result, some generations may become decodable even if NQet M (g, z) be the number of coded packets from a gener-
new coded packets are received from the source. Again, ¥on of sizeg adequate for collecting linearly independent

newly decoded generations resolve some unknowns of guations. Thed/ (g, z) has expected value [9]
generations they overlap with, which in turn may become

Receiver Buffer

decodable and so on. We declare successful decoding when . 1
all N information packets have been decoded. E[M(g,2)] =) _ 1—go @
The coding scheme described here is inherently rateless J=0
and easily extendable to more general network topologes tipproximating summation by integration, from (1) we get
allow coding at intermediate network nodes. z—1 1 1
<

D. Packet Overhead EM(g, )] %/0 1 —q¥=9 vt 1—go 19

g 1—q79

Contained in each coded packet are the index of a generation —7 4+ +log )
G; and a linear combining vector fo@; which together 1—qgot9 T1—qv19



Let A. Generating Functions, Expected Values and Variances
q=1-9 1—q9 For anym € N, we defineS,, (x) as follows:

(@) =t T e Tt T ey O R g
Sm(z) =1+ =+ 5+ +——x (m=1) (5)
We can user,(z) to estimate the number of coded packets 2! (m =1
needed from a certain generation to gathdinearly indepen- Sm(z) =0 (m <0) and S () = €”. (6)

dent equg_uons. . ) ) Let the total number of samplings needed to ensure that
In addition, we have the following Claim 1 which uppet east,,,(> 0) copies of coupori; are collected for all
bounds the tail probability of\/ (g, ¢), the number of coded i—1.92 . nbe T(p,m), wherem = (m1,ma, . .., my).

packets_ needed for a ce_rtain generatiqn to gather enOb\gmE following Theorem 2 givesr(,.m)(2), the generating
linearly mcljependent_equau.o_ns for decoding. function of the tail probabilities off’(p, m). This result
Claim 1: There exist positive constant,, andas, SUch i generalized from [10] and [11], and its proof uses the

that, fors > g, Newman-Shepp symbolic method in [10]. Boneh et al. [12]
g—1 gave the same generalization, but we restate it here formuse i

ProM (g,g9) > s] =1 — H(1 —¢") our analysis of coding over disjoint generations. If for leac
k=0 j = 1,2,...,n, the number of coded packets needed from

generationG; for its decoding is known to ben; (which

< 1—exp(—ageq 7)< 1—exp(—az,00q 7).
v ~ can be strictly larger than the generation siz¢, 7'(p, m)

Also, sincel — exp(—x) < x for x > 0, then gives the total number of coded packets needed to ensure
(s—g) successful decoding of the entire content when the geoesati
ProliM (g, g) > s| < aqqq™ "7 (4)  are scheduled according to the probability vegtor
Proof: Please refer to Appendix A. [ ] Theorem 2:(Non-Uniform Sampling) Let
We will use Claim 1 in Theorem 8 in Section V to derive an Pr(pum)(2) = Y _ Prob[T(p,m) > i2". 7
upper bound to the expected overhead of coding over disjoint i>0
generations. Then
m = 8
IV. CoUPONCOLLECTOR S BROTHERHOOD AND CPT;‘)” () " ®
COLLECTING CODED PACKETS FROM GENERATIONS / e—e(1=2) _ H [e—wu—z) — S, (pim)e—pw] }d:c.
The coupon collector’s brotherhood problem [10], [11] 0 =1
studies quantities related to the completionmefsets ofn Proof: Please refer to Appendix B, where we give a

distinct coupons by sampling a set af distinct coupons full proof of the theorem to demonstrate the Newman-Shepp
uniformly at random with replacement. In analogy, codesymbolic method [10], which is also used in the proof of our
packets belonging to generatigrcan be viewed as copies ofother generalization in Theorem 4. [ ]
couponj, and hence the process of collecting coded packetsThe expected value and the variance Bofp, m) follow
when generations are scheduled uniformly at random can fbem the tail probability generating function derived in &d+
modeled as collecting multiple copies of distinct coupons. rem 2.

Because of possible linear dependence among coded packe€orollary 3:
and the overlaps between generations, the numbers of codedE[T( m)] = (1)
packets needed for each of thegenerations to ensure suc- P; $T(pm) .
cessful decoding, however, anerandom variables. Therefore, [~ N—piw
we must generalize the coupon collector’s brotherhood mode N /0 {1 B H [1 = Sm.(pi)e ]} 4z,
from collecting a uniform number of copies for all coupons to , N 9
collecting diﬁgrent numbers of copiesaor different cgupo Var(T(p,m)] = 207 (p,m) (1) + @1(pam) (1) = &7 (p,m) (1)
before it can be applied to the analysis of the throughput Proof: Please refer to Appendix B. ]
performance of coding over generations. In this sectioa, th Note that in Theorem 2 and Corollary &;-s are allowed
original collector’s brotherhood model is generalizedwot to be0, thus including the case where only a specific subset
ways. And later in this paper, the analysis of the throughpot the coupons is of interest. Theorem 2 and Corollary 3 are
performance of coding over disjoint generations in Section also useful for the analysis of coding over generations when
rests on the first generalization, whereas that of coding ovhere is a difference in priority among the generations. For
overlapping generations in Section VI rests on the secomdtance, in layered coded multimedia content, the geioasat
generalization. As our results are of more general intéhest containing the packets of the basic layer could be given
the coding-over-generations problem, we will express tirema higher priority than those containing enhancement layers
the coupon collection language. For example, the proltgbilbecause of a hierarchical reconstruction at the receiver.
p; of scheduling generatioyr; (defined in Section Il) here In the following, we present another generalization of the
refers to the probability of sampling a copy of coup@n for collector’s brotherhood model. Sometimes we are simply
1=1,2,...,n. interested in collecting a coupon subset of a certain size,



regardless of the specific content of the subset. This can dming scheme in which generations share randomly chosen
further extended to the following more complicated case: finformation packets. The effect of the overlap size on the
eachi =1,2,..., A(A > 1), ensure that there exists a subsahroughput can be investigated henceforth.

of {G1,Ga,...,G,} such that each of it&; elements has at

leastrn; copies in the collected samples. Such a generalizatign Limiting Mean Value and Distribution

is intended for treatment of coding over equally important
generations, for example, when each generation is a sabstr
of multiple-description coded data. In this generalizatio
the generation scheduling (coupon sampling) probatsildike

In the previous subsection, we considered collecting aefinit
Siumber of copies of a coupon set of a finite size. In this part,
we present some results from existing literature on thetilngi

assumed 1o be uniform. i e _ behavior ofT'(p,m) asn — co Or my =mg = --- =m, =
S;” " tuf Ir ;n"qo‘ 7itfi)\3 7ir.1';. 7rp27 /|Zt m — 0o, assumingp; = ps = - -+ = p, = =. By slight abuse
uppose that for some posiive egér < n, integers notation, we denoté&(p, m) here asl,,(m).
ki,...,ka andmy,...,my satisfyl <k <---<ksa <n
By Corollary 3,
andoo = mg > my > -+ > ma > may; = 0. We are

interested in the total numbéf(m, k) of coupons that needs E[T,(m)] = n/oo 1= (1= Sp(x)e )] de.  (10)
to be collected, to ensure that the number of distinct cospon " 0 "

for which at leastm; copies have been collected is at least The asymptotics of2[T;, (m)] for largen has been discussed

ki, for all i = 1,2,..., A, wherem = (my,ms,...,ma) in literature [10], [14] and [15], and is summarized in the
andk = (k1, ks, ..., ka). The following Theorem 4 gives the following Theorem 6, (13), and Theorem 7.
generating functionoy m i) (2) of U(m, k). Theorem 6:([14]) Whenn — oo,

Theorem 4:(Uniform Samplin
( Piing) E[T,,(m)] = nlogn+(m—1)nloglogn+C,,n+o(n), (12)

Pu(mk) (2) = ”A eim{enm* ©)  where Cpy = v — log(m — 1)!, ~ is Euler’s constant, and
A, . _ m € N,
i Lj+170
Z H (Z;H) {Smj (22) — Snwl(mz)} }dm. Form > 1, on the other hand, we have [10]
<i"0‘;1?',;';1;:%”=0 ’ E[T,(m)] — nm. (13)
i€k iy
=120 What is worth mentioning is that, as the number of coupons
Proof: Please refer to Appendix B. B n — oo, for the first complete set of coupons, the number
Same as for Corollary 3, we can finf[U(m,k)] = of samplings needed i©(nlogn), whereas the additional

Yumyx)(1). A computationally wieldy representation ofnumber of samplings needed for each additional set is only
E[U(m, k)| is offered in the following Corollary 5 in a O(nloglogn).

recursive form. In addition to the expected value @f,(m), the concen-
Corollary 5: Fork = ki, k1 +1,...,n, let tration of 7,,(m) around its mean is also of great interest to
ek us. This concentration leads to an estimate of the prolabili
G0,k (%) = [(Smo () = Sm, (2))e™]"; of successful decoding for a given number of collected coded
Forj=1,2,..., A, let packets. We can specialize Corollary 3 to derive the vaganc
of T,(m), as a measure of probability concentration.
i,k () Further, since the tail probability generating functiores d

ok o kew rived in the last subsection are power series of non-negativ
- Z (w) [(S’”J‘ (@) = Sy (2))e z} Gj—1,w(2), coefficients and are convergent &t they are absolutely
w=k; convergent on and inside the circlel = 1 in the complex
fork =kji1,kj1 +1,...,n. z-plane. Thus, it is possible to compute the tail probabiti
Then using Cauchy’s contour integration formula. However, axtr
' o0 care is required for numerical stability in such computatio
E[U(m, k)| = n/ (1 —¢an(2))de. (10)  Here we instead look at the asymptotic case where the
) ] 0 ) number of coupons — oo. Erdés and Rényi have proven
_Itis not hard to find an algorithm that calculates ¢4.n(x)  in [16] the limit law of T;,(m) asn — oc. Here we restate
in (comyt+ea(n=1)+e3 351 >y, (k—Fkj)) basic arith- | emma B from [14] by Flatto, which in addition expresses
metic operations, wherg, c, andc; are positive constants. Asthe rate of convergence to the limit law. We will later usesthi
long asmy = O(An?), we can estimate the amount of workesyit to derive a lower bound for the probability of decagin
for a single evaluation of — ¢4 ,(x) to be O(An?). The failure in Theorem 9 in Section V-B.
integral (10) can be computed through the use of an efficientrhegrem 7:([14]) Let
quadrature method, for example, Gauss-Laguerre quadratur 1
For reference, some numerical integration issues for theiap Y, (m) = — (T,(m) —nlogn — (m — 1)nloglogn) .
case whered = 1 have been addressed in Part 7 of [13] and "
in [12]. Then,
In Section VI, we will apply Corollary 5 to find out the e Y loglogn
expected throughput of trandom annex coden overlapping PriYy(m) < y] = exp ( (m — 1)!) 0 ( logn ) '



Remark 1:(Remarks 2&3, [14]) The estimation in Theorem
7 is understood to hold uniformly on any finite intervah <

y < a. i.e., for anya > 0, E[W(p,g)]
— — _ _ p T PiT .

Prob[Y,,(m) < y] — exp _ep(y) < c(m,a)loglﬂ’ —/0 (1 H (1—e "By, [Su, (M)])) dz  (16)

(m—1)! logn i=1
n>2and—a < y < a. C(m,a) is a positive constant </ (1 - (1 — e "7 (Sy, (piz) (17)
depending onn anda, but independent of. Form = 1, the o i=1

fani R . loglogn R )
convergence rate to limit law is much faster: m5<—10gf; ) + aggq%iel /q _ 0g.9.4% S i(pim/q))))dx,
term become®) (1"%)
EW?(p,g)] (18)
V. CODING OVER DISJOINT GENERATIONS . /oo x(l - zn:p» 1 — B, [Sag—1(piz)]e” 7
In this section, we study the performance of coding over 0 " 1- Ep, [Su,(piz)] e=ri®

disjoint generations. We derive both an upper bound and a n
lower bound for the expected decoding latency (as defined H (1— En, [Su, (pjz)] e 77) )d:c
in Section II-F). We also derive the variance of the decoding J=1

latency. + /OOO (1 _ ﬁ (1 — e PTEN, [Su, (mx)])> dx

i=1

A. Expected Decoding Latency and Its Variance wherea,.,, = — %:_ol n (1 B qk_g%) =12, ..m

Let M; (i = 1,2,...,n) be the number of collected Proof: Please refer to Appendix C. [ |
coded packets from generatighi; when G; first becomes In the case where generations are of equal size and sched-
decodable. Then; is at leasty;, has the same distribution asuled uniformly at random, we can estimate the asymptotic
M (gi, g;), the number of coded packets needed for a certdower bound for E[IW (p, g)] by the asymptotics off},(m)
generation to gather enough linearly independent equatiagiven in (12) and (13).
for decoding, as defined and studied in Section MJ;'s are Figure 2(a) shows several estimateddfV (p, g)|, and Fig-
independent random variables. Let the decoding latencyaveure 2(b) shows the standard deviation1df(p, g) calculated

perfect channel bé&/ (p, g), whereg = (g1,92,...,9»).- USe from Theorem 8 and simulation results, when = % and
We(p, g) to denote the decoding latency on a BEC( gi = g fori = 1,2,...,n. The estimates are plotted versus
Let X; (k=1,2,...) be i.i.d. geometric random variableshe uniform generation sizg for fixed N = ng = 1000.
with success rate—e. Therefore F[X;] = & andE[X}] = For coding over disjoint generations and a fixed total num-
(11_%6)2. Then ber of information packets, both the expected value and the
W(p.g) standard deviqtion .of the decoding Ia_tency drop signiflgant
W.(p,g) = Z X, as the generation sizegrows to a relatively small value from
’ P ’ the case where no coding is used=£ 1). Hence, throughput
is improved by a moderate increase in the computational cost
and therefore, that scales quadratically with the generation size (seédec
1 [I-E). On the other hand, we also observe that past a moderate
EW(p,g)] = 1—6E[W(p,g)], (14) generation size~ 50 — 100 coded packets foiV = 1000),

the decrease in decoding latency becomes slower by further
(Var[W(p,g)] + eE[W?(p,g)]) . increasing the encoding/decoding complexity. We thegefor
(15) argue for a “sweet spot” generation size which characterize
the tradeoff between throughput and complexity.

Var[We(p,g)] =

1
(1—-¢)?

By definition, E[W (p, g)] is lower bounded byZ[T'(p, g)],
the expected number of coded packets necessary for CO”%:.t'Probability of Decoding Failure
ing at leastg; coded packets for each generatiéh, and ) ) . ) .
E[T(p,g)] is as given in Corollary 3. In this subsection we assume uniform generation size and
The following Theorem 8 gives the exact expression for ttgeheduling probability, i.ep; = mgi=gfori=12..n
first and second moments &F (p,g), along with an upper FOr short, we denotéV (p, g) as Wy (g). From Theorem 7,
bound for E[W (p, g)] considering the effect of finite finite W& ob_tam t_he following I.ower bound to the probability of
field size g. Then, the expected value and the variance gfcoding failure as — oo: N _
W.(p,g) can be derived from (14) and (15). Theorem 9:When n — oo, the probability of decoding

Theorem 8:The expected number of coded packets neegt@ilure whent coded packets have been collected is greater
loglogn

for successful decoding of alV information packets thanl—exp {—ﬁn(bg n)?~texp (—%)} +0 (—bgn )
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Fig. 2. (a) Estimates of’[W (p, g)], the expected number of coded packet
required for successful decoding when the total numberfofiimation packets

Proof: The probability of decoding failure after acquiring
t coded packets equals Pfai3,(g) > t]. Since W, (g) >

T(9),
ProdW,(g) > t] > ProlT,(g) > t]

t
=1—-Prob|Y,(9) < — —logn— (g — 1)loglogn| .
n

The result in Theorem 9 follows directly from Theorem l.
Corollary 10: When ¢ is fixed andn — oo, in order
to make the probability of decoding failure smaller than
the number of coded packets collected has to be at least
E[T,(g9)] — nloglog 1. If § = 3 for some constant,
then the number of coded packets necessary for successful
decoding has to be at leaB{T,,(g)] + cnlog(ng).
Theorem 4.2 in [5] also gives the number of coded packets
needed to have the probability of decoding failure betow
+= but under the assumption tHat{ N /6) = o(N/n) = o(g).
In comparison, Corollary 10 treats the case whgiseconstant.
Figure 2(c) shows the estimate of the probability of decod-
ing failure versusl’, the number of coded packets collected.
As pointed out in Remark 1, form > 2, the deviation of
the CDF ofT;,(m) from the limit law forn — oo depends
onm and is on the order 0O (*£°5%) for m > 2, which
is quite slow, partly explaining the deviation of the limaw
curves from the simulation curves fat = 5 andm = 10 in

Figure 2(c).

VI. CODING OVER OVERLAPPING GENERATIONS

Even when generations are scheduled uniformly at random,
there will be more coded packets accumulated in some of
the generations than in others. The “slowest” generation is
the bottleneck for file decoding. It is then advisable to gesi
a mechanism that allows “faster” generations to help those
lagging behind. In this section, we propose tla@dom an-
nex code a new coding scheme in which generations share
randomly chosen packets, as opposed to previously proposed
“head-to-toe” overlapping scheme of [7].

We provide a heuristic analysis of the code throughput
based on our results for the coupon collection model and an
examination of the overlapping structure. Previous work on
coding over overlapping generations, [6] and [7], lacksuacc
rate performance analysis for information blocks of motera
finite lengths. On the other hand, the computational effort
needed to carry out our analysis scales well with the length
of information, and the performance predictions coincididw
simulation data. In addition, we find that our random annex

‘tode outperforms the “head-to-toe” overlapping schemé&pf [

is N = 1000, and bothg and p are uniform. Estimates shown: lower boundOVer a unicast link.

E[T(p,g)]; upper bound (17); mean dfV (p, g) in simulation;n — oo
asymptotic (12);,m > 1 asymptotics (13); (b) Estimates of the standar
deviation of W (p, g); (c) Estimates of probability of decoding failure versu
the number of coded packets collected: Theorem 9 along viiittulation

results.

In this section we conveniently assume that the coded

Sdpackets are sent over a perfect channel, since here we are

interested in comparing the performance of different est®l
coding schemes.

A. Forming Overlapping Generations

We form n overlapping generations out of a file witN
information packets in two steps as follows:



1) Partition the file setF of N packets into subsets The following Theorem 15 quantifies the expected amount
By, Bs, ..., B,, each containing consecutive packets. of help a generation may receive from previously decoded
Thesen = N/h subsets are referred to agase gener- generations in terms of common information packets. In the
ations Thus, B; = {p(i—1)h+1,Pii—1)h+2,--->Pin} fOr next subsection, we use Corollary 5 and Theorem 15 for a
i=1,2,...,n. N is assumed to be a multiple affor heuristic analysis of the expected throughput performarice
convenience. In practice, i¥ is not a multiple ofh, set the random annex code.

n = [N/h] and assign the lagtv — (n — 1)h] packets = Theorem 15:For anyl C {1,2,...,n} with |I| = s, and
to the last (smaller) base generation. anyj € {1,2,...,n}\I,

2) To each base generatid;, add a randormannexR;, _ 4 4 0 — —s ~s
consisting of packets chosen uniformly at random Qo) = B (UierGi) 0 Gyl =g+ [L = 7]+ sh-mm® (19)
(without replacement) from theV — h = (n — 1)h Where|B| denotes the cardinality of sét. Whenn — oo,
packets inF\B;. The base generation together with itéf + — a and £ — g, and letw(8) = Q(s), thenw(B) —
annex constitutes thextended generatioi; = B;UR;, h[(1+a) (1 —e %) + afe 7],
the size of which isg = h + . Throughout this Proof: Please refer to Appendix D. u
paper, unless otherwise stated, the term “generation” will ) ,
refer to “extended generation” whenever used alone for EXPected Throughput Analysis: The Algorithm
overlapping generations. Given the overlapping structure, we next describe an analy-

The generation scheduling probabilities are chosen to 8§ Of the expected number of coded packets a receiver needs
uniform, p; = p2 = --- = p, = 1/n. The encoding and t© collect in order to decode alV information packets of

decoding procedures run the same as described in the gen@hgn they are encoded by the random annex code. We base

model in Section II. our analysis on Theorem 15 above, Corollary 5 in Section IV,

and also (3) in Section Ill, and use the mean value for every

guantity involved.

: _ _ By the time whens (s =0,1,...,n — 1) generations have
The following Claims 11 through 14 present combinatorideen decoded, for any one of the remaining- s) generations,

derivations of quantities concerning the frequency at Whign the averagé)(s) of its participating information packets

an arbitrary information packet is represented in differepaye been decoded, or equivalently,— Q(s)) of them are

genergtions. . . not yet resolved. If for any one of these remaining genematio
Claim 11: For any packet in a base generatiéii, the the receiver has collected enough coded packets to decode

probability that it belongs to annext,. for somer € ijts unresolved packets, that generation becomegshel)th

B. Analyzing the Overlapping Structure

{1,2,...,nt\{k} is decoded:; otherwise, if no such generation exists, decoding
N—-h—1\,/N—h I l fails.
= ( -1 )/( I ) “N_§h (n—1h’ The quantityn, (x) defined in (3) in Section Ill estimates the
N ) ] number of coded packets from a generation of gizelequate
whereas the probability that it does not belonghpis 7 = ¢or collectingz linearly independent equations. By extending
1—m. the domain ofn,(x) from integers to real numbers, we can

Claim 12: Let X' be the random variable representing thggiimate that the number of coded packets needed fd(isthe
number of generations an information packet participates )th decoded generation should exceef= [1,(g— Q(s))].

Then, X =1+, whereY’ is Binom(n — 1, 7). Since in the random annex code, all generations are randomly
B B l scheduled with equal probability, for successful decoging
EX]=1+4n-Dr=1+ X would like to have at least, coded packets belonging to one
and of the generations, at least; belonging to another, and so
Var[X] = (n — 1)77. on. Then Corollary 5 in Section IV can be applied to estimate

the total number of coded packets needed to achieve these
Claim 13: In each generation of size= h+I, the expected minimum requirements for the numbers of coded packets.
number of information packets not participating in any othe The algorithm for our heuristic analysis is listed as follow
generation ishz ("~ ~ he~!/" for n > 1; the expected 1) Compute)(s — 1) for s = 1,...,n using Theorem 15;
number of information packets participating in at least two 7) Computern!, = [1,(g — Q(SL 15)1 fors=1,2,....n ’
generations is using (3);
3) Mapm) (s = 1,2,...,n) into A valuesm, (j =

I+ Al — 7]~ h[l— —l/h}< in{g, 2l
+h| m ] + e min{g, 2/} 1,2,.--,A)50thatmj:m;cj,1+1:m;cj,1+2:"'

for n > 1 andl > 0. m;cj, forj=1,2,...,A, kg =0 andky = n;

Claim 14: The probability that two generations overlap is 4) Evaluate (10) in Corollary 5 with the, k;s, andm;s
1— (l z ﬁ:f,?_Ql)/(N;h)Z. The number of generations over- obtained in Step 3), as an estimate for the expected num-
lapping with any one generatia®; is then ber of coded packets needed for successful decoding.

Remark 2: The above Step 3) is viable becauQg¢s) is

2
Binom [ n —1.11 - < N —2h >/<N - h) ~nondecreasing im, n,(z) is non-decreasing im for fixed g,
’ I, N —2h -2l ! and thusm/, is non-increasing irs.



Although our analysis is heuristic, we will see in the next
section that the estimate closely follows the simulatedaye
performance curve of the random annex coding scheme.

D. Numerical Evaluation and Simulation Results

1) Throughput vs. Complexity in Fixed Number of Genera-
tions SchemesOur goal here is to find out how the annex size
[ affects the decoding latency of the scheme with fixed base
generation sizé and the total number of information packets
N (and consequently, the number of generatians Note
that the generation sizg¢ = h + | affects the computational
complexity of the scheme, and hence we are actually looking 1600 ‘ ‘ ‘
at the tradeoff between throughput and complexity. TS random annex

Figure 3 shows both the analytical and simulation results 4= theoretical random annex]|
when the total numbelN of information packets i2000 and
the base generation sizeis 25. Figure 3(a) show# + [ —
Q(s) for s = 0,1,...,n with different annex sizes. Recall
that Q(s) is the expected size of the overlap of the union of
s generations with any one of the leftover— s generations.
After the decoding of generations, for any generation not yet

o
=3
S

'S
o
=]

w
o
S

n
o
S

o
S

# coded packets required for decoding

decoded, the expected number of information packets titlat st 1000}
need to be resolved is thém I — Q(s). We observe that the 0 5 10 i 20
h+1—Q(s) curves start fronh + [ for s = 0 and gradually annex size |
descends, ending somewhere abavel, for s =n — 1. ()
Recall that we measure throughput by decoding latency ‘ RN —— tandom annex, 112

\ B random annex, =8 |-
1 L = = = head2toe, -8

\ = = = = head2toe, =12
[y - ‘' non-overlapping, 1=0|

(Section II-F). Figure 3(b) shows the expected performance
of the random annex code, along with the performance of the
head-to-toe overlapping code and the non-overlapping code
(I = 0). Figure 3(c) shows the probability of decoding failure
of these codes versus the number of coded packets collected.

o Our analysis for the expected decoding latency closely
matches the simulation results.

« Figure 3(b) shows that by fixing the file siZé and the
base generation sizk, the expected decoding latency o —— e
decreases roughly linearly with increasing annex $jze # of coded packets received
up tol = 12 for the random annex scheme and up to 8 (©)
for the h_ead_to_t(_)e SCheme'_ MeanWh!Ie’, the deCOd"&%. 3. N = 1000, h = 25, ¢ = 256: (a) Difference between the generation
cost per information packet is quadratic gn= h + .  size and the expected size of overlap with previously detagenerations
Beyond the optimal annex size, throughput cannot e+ —(s)); (b) Expected number of coded packets needed for successful
further increased by raising computational cost. decoding versus annex size(c) Probability of decoding failure

o The random annex code outperforms head-to-toe over-
lapping at their respective optimal points. Both codes
outperform the non-overlapping scheme. other generations, the remaining information packets is th

« As more coded packets are collected, the probability generation can be solved in a system of linear equations of
decoding failure of the random annex code convergesfmver thang unknowns, and as a result increasihgnight
0 faster than that of the head-to-toe and that of the nodecrease the decoding complexity.

probability of decoding failure
o o o o o o o o
o

overlapping scheme. Figure 4 shows both the analytical and simulation results fo
oVer|apS pro\/ide a tradeoff between Computationa| Corﬂ'le code performance when the total numbeof information
plexity and decoding latency. packets is fixed at000 and sizey of extended generation fixed

2) Enhancing Throughput in Fixed Complexity Schemesat 25.
Our goal here is to see if we can choose the annex sizes Again our analytical results agree with simulation results
to optimize the throughput with negligible sacrifice in com-  very well;
plexity. To this end, we fix the extended generation size « It is interesting to observe that, without raising computa-
g = h+ 1 and vary only the annex siZe Consequently, the tional complexity, increasing annex size properly can stil
computational complexity for coding does not increase when give non-negligible improvement to throughput;
[ increases. Actually, since some of the information packets « Figure 4(a) shows a roughly linear improvement of
a generation of size could already be solved while decoding throughput with increasing up to/ = 10 for the random
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Fig. 4. N = 1000, g = h+1 = 25, ¢ = 256: (a) Expected number of coded Overlap size in terms of other parameters of the code is our

packets needed for successful decoding versus annex;sfla¢ Probability object of interest in the future.
of decoding failure

APPENDIXA

annex scheme and upte= 6 for the head-to-toe scheme. PROOF OFCLAIM 1

Increasingl beyond affects throughput adversely; Fori=1,2,...,n and anys > g, we have
o The random annex code again outperforms head-to-toe
overlapping at their optimal points. Both codes outper- ~ InProb{M (g, g) < s}

form the non-overlapping scheme; g
« We again observe that the probability of decoding failure = [J(1=¢")=> (1 -¢")
of the random annex code converges faster than those of k=0 k=0
-to- - i g—1 oo 00
W:}he head-to-toe anq thg non overlapplng schemes. - Z Z 1 ey Z Z i)
en the overlap size increases, we either have larger
generations with unchanged number of generations, or arlarg k= OJ 1 , 7 k=0
number of generations with unchanged generation size.tm bo _ Z _qus ¢ -1
cases the decoding latency would increase if we neglected th ] ¢ -1

effect of overlaps during the decoding process. If we make us 4 1 — =99
of the overlap in decoding, on the other hand, the larger the =—qg =9 Z __q—(j—1>(s—g)f7q
overlap size, the more help the generations can lend to each ¢ —1
other in decoding and, hence, reducing the decoding latency

T i i i ig N
wo canceling effects result in a non-monotonic relatigmsh >q Z
between throughput and overlap size. 17 R
The effect of generation size on the throughput of random =q¢~ (579 1n Prob{M (9,9) < g}
annex codes is further illustrated in Figure 5. Figure 5 9lot

—(s=9) <
the optimal expected decoding latency achievable by random >4 hﬂlgogf]:Q 1nProb{M(g,g) - g}

annex codes and the corresponding optimal annex size ve
the generation size foN = 1000 and ¢ = 16. The plotted
values are calculated using the algorithm listed in Section
VI-C.

We can see from Figure 5 that with the random anned
code and a generation size 2, the expected throughput (200 =— lim _InProb{M(g,g) < g}.
is better than what can be achieved with coding over disjoint ' g—00,q=2 B

r‘TQ‘He claim is obtained by setting

aqyg = 7hlPrOb{M(g)g> S g}’
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APPENDIX B Proof of Corollary 3
PROOFS OFGENERALIZED RESULTS OFCOLLECTOR'S Note that

BROTHERHOODPROBLEM o

Proof of Theorem 2 1(pm) (2) = ) Prob[T'(p,m) > t]2*
t=0
Our proof generalizes the symbolic method of [10]. oo o0
Let ¢ be the event that the number of copies of couphn =Y > Prob[T(p,m) = j]2'

is at leastm,; for every: = 1,2,...,n. For integert > 0, t=0 j=t+1
let £(t) be the event that has occurred after a total af o0 g1
samplings, and le€(t) be the complementary event. Then, = Prob[T(p,m) =j]) 2"
the tail probabilityProb[T'(p, m) > t] = Prob[{(¢)] = v;. j=1 t=0

To derive 1;, we introduce an operatoy acting on

an n-variable polynomial g. removes all monomials =N .
xtay? .l ﬁ\ Z satisfyigng{yl > My, .., Wy > Mg E[T(p,m)] = ZjPrOb[T(p’ m) = j} = ¢7(o.m) (1)
Note that f is a linear operator, i.e., if; and g» are two =t
polynomials in the same variables, and. andb two scalars, Similarly,
we haveaf(g1) +bf(g2) = f(ags + bgs). >
Each monomial ir{(z; +- - -+,,)* corresponds to one of the Pr(poem) (2) = Y tPTOb[T(p,m) > 1]~
n' possible outcomes afsamplings, with the exponent of t=0
being the number of copies of coup6fy. Since the samplings i i1
are independent, the probability of an outcariféz¥2 . . . z» =Y Prob[T(p,m) = j] > tz'""
is p"tpi> ... p%=. Hence, the probability of (t) is f((x1 + =1 =0
t _ . . o0
+x,)"), when evaluated at; = p; fori =1,2,...n, i.e., o (1) = Z %j(j — 1)Prob[T(p,m) = j].
vy = f((xl + -+ xn)t)lzcizpi,izl,...,n- (20) g=1
Hence,

Hence, (20) and (7) lead to

21 = ) .
(pT(p,m)(Z) = Z f ((ml +---+ xn)t) Zt|a;7,=pi,i=1,...,n- E[T(p, m) ] _;j PI‘Ob[T(p, m) - j]

t>0
B ZQSOIT m (1) +er ,m (1)a
The identity (pom) (p.m)
1, and consequently,
/ gye =1 , :
and the linearity of the operatgt imply that We have
o 1+ -+ xn)t B / _
PT(p,m) (Z) :/ Z f (( ! fl ) )Ztyte ydy @T(p,m) (Z) .
0 20 ' R SR e 72 — 5, (parz)e i
[~ (z12y + - + Tn2y)" ~vq 0 o\ - ; P empa=a) = S, (pizz)e=rie
=) ! (Z tl )e Y n -
0 t20 —pjz(l—z2) —pjx
00 . H (e P — Sm; (pjrz)e ) dz,
= f(exp(zizy + -+ xpzy)) e Ydy (21) j=1
0 ' and from there, we can get;,, (1) and VaiT'(p, m)].
evaluated atr; = p;,i =1,...,n. ’

We next find the sum of the monomials in the polynomiaﬂ,roof of Theorem 4

expansion okxp(z, +- - - +x,) that should be removed under _ _ o
f. Clearly, this sum should bE["_, (¢%* — Sy, (x;)), where We again apply the Newman-Shepp symbolic method. Similar

S is defined in (5) and (6)). Therefore, to the proof of Theorem 2, we introduce an operatacting
on ann-variable polynomial. For a monomial:™ ... z%,
flexp(izy + -+ Tn2Y)) loi=p; i=1,...n let i; be the number of exponents, amongws,...,w,
n satisfying w, > k;, for j = 1,...,A. f removes all
=e* — H (e’ — S, (pizy)) . monomialsz{’ ...z¥" in g satisfyingiy; > k1,...,ia > ka
i=1 andi; < --- <. f is again a linear operator. One can see
that
Pr(pm)(2) = / [ezy =] (" = Sm.(pizy)) | e ¥dy ~ PUmMK) (2) = (23)
0 i=1

22) ; f(exp(z1zy+ -+ + xn2y)) e*ydy|x1:x2=,,,=xn=%.



We choose integer§ = ig < iy < ---
such thati; > k; for j =1,...
{1,...,n} into (A + 1) subsetsZ,, ...

<ia<1ia41 =mn,

,Zat1, WhereZ;(j =

.,A+1) hasi; —i;_; elements. Then
At1
H H (S'”Lj—l (zi) — S””j (i) (24)
j=1i€Z;
equals the sum of all monomials éxp(z; + - - - + x,,) with

(ij —
than or equal ten;, forj = 1,.

by (5-6).) The number of such partltlons{)]f, ...,n}isequal

n
t (n DA yeneyt2—11,11
i1,...,14 satisfyingk; <i; <i;y; forj=1,... A:

+2nzy) oy =ma, =2 = exD(2Y)—

(*) [, (22) = 80,0, (22

n

[ (exp(z12y + -

>

(30 i1,--ia41): F=0
7,0 07’A+1 n

Elkj 7’J+1]

2

G111

(25)
Bringing (25) into (23) gives our result in Theorem 4.

APPENDIXC
PROOF OFTHEOREM 8

EW(p,g)]
= (H PIM ) E[T(p,m)]
m =1
/ 1- Z PrM; = m;](1 — Sy, (pi:c)ep"’x)] dz
0 =1 m,
(26)
0 i=1
(26) comes from the distributivity.
Since
Bu [Sw i) = S &2 22 b, > 5,
j=0
by Claim 1,
B, [Sur, (pi)]
oo iﬁL‘ ] o
< Sy, (piz) + Z (/)T)O‘q,gq U=
J=9i ’
= Sy, (pi) + 0g,9,0% "™/ — 01q.4,4% S, (pi7/q),
where
gi—1
Oq,g, = lnPr{M 9is gi) < Z Zln — gi)
k=0

fori=1,2,....n
Hence, we have (17).

i;_1) of the n exponents smaller tham] | but greater Uz 1Gifors=0,1,...,
, A+1. (HereS is as defined

) =TI, (“jl) Finally, we need to sum
the terms of the form (24) over all partitions of all choicds o

12

Expression (18) foi2[W?2(p, g)] can be derived in the same

, A, and then partition indices manner, and then the expression for[VEf p, g)] immediately

follows.

APPENDIXD
PROOF OFTHEOREM 15

Without loss of generality, lef = {1,2,...,s} andj =
s+ 1, and defineRs = U;_, R;, Bs = U;_;B;, andGs; =
n—1. Then, E[| (UierG:) N G;|] =

E[|Gs N G441]]. For any two setsX andY, we useX +Y
to denoteX UY whenX NY = 0.

Gs N Gs+1 :(Bs + Rs\Bs ( s+1 T RS+1)
=Bs N Rs11+Rs N Bsy1 + (Rs\Bs) N Rs1,

and therefore

EHgs N Gs+1|] :EHBS N R5+1|]+ (27)
E[[Rs N Bsya|] + E[|(Rs\Bs) N Ro1]]-

Using Claim 11, we have

E[|Bs N Ryy1|] = shm, (28)
E[|Rs N Bsjal] = bl — (1 —m)*], (29)
E[[(Rs\Bs) N Ry 1] = (n — s = Dhn[l — (1 —m)°], (30)

where  is as defined in Claim 11. Bringing (28)-(30) into
(27), we obtain (19).
Furthermore, when — oo, if I/h — o ands/n — (3, then

BlIG, N Gonl] =g [1 — 7] + sh - 77

Sh(l+a)[1- (1- -2 1)n5}+
ho‘ﬁ(l - ni 1)n5

—>h[(1 +a)(l—e 9B+ aﬁe“"ﬂ}

=h[1+a—(1+a-af)e]
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