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Abstract—A new coding scheme for image transmission over
noisy channel is proposed. Similar to standard image com-
pression, the scheme includes a linear transform followed by
embedded scalar quantization. Joint source-channel coding is
implemented by optimizing the rate allocation across the source
subbands, treated as the components of a parallel source model.
The quantized transform coefficients are linearly mapped into
channel symbols, using systematic linear encoders of appropriate
rate. This fixed-to-fixed length “linear index coding” approach
avoids the use of an explicit entropy coding stage (e.g., arithmetic
or Huffman coding), which is typically non-robust to post-
decoding residual errors. Linear codes over GF (4) codes are
particularly suited for this application, since they are matched
to the alphabet of the quantization indices of the dead-zone
embedded quantizers used in the scheme, and to the QPSK
modulation used on the deep-space communication channel.
Therefore, we optimize a family of systematic Raptor codes over
GF (4) that are particularly suited for this application since they
allow for a continuum of coding rates, in order to adapt to the
quantized source entropy rate (which may differ from image
to image) and to channel capacity. Comparisons are provided
with respect to the concatenation of state-of-the-art image coding
and channel coding schemes used by Jet Propulsion Laboratories
(JPL) for the Mars Exploration Rover (MER) Mission.

I. INTRODUCTION

In conventional image transmission over noisy channels, the
source compression and channel coding stages are designed
and applied separately. Image coding is usually implemented
by a linear transformation (transform coding), followed by
the quantization of the transform coefficients, and by entropy
coding of the resulting redundant discrete source formed by the
sequence of quantization indices. Due to the catastrophic be-
havior of standard entropy encoding/decoding schemes, even
if only a few bits are in error after the channel decoder, the
decompressed source transform coefficients are dramatically
corrupted, resulting in a substantially useless reconstructed
image. In order to prevent this catastrophic error propagation,
the source is partitioned into blocks, such that the errors are
confined in the blocks, at the cost of some extra redundancy. In
order to preserve integrity, which is a strict requirement in deep
space exploration scientific missions, blocks affected by errors
are requested for retransmission, at the cost of significant extra
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delay and power expenditure. Furthermore, due to the typically
sharp waterfall BER behavior of powerful modern codes, when
channel conditions change due to different atmospheric con-
ditions, or antenna misalignment, the resulting post-decoding
BER may rapidly degrade, producing a sequence of highly
corrupted images that need retransmission.

In this paper we consider a scheme for Joint Source-Channel
Coding (JSCC) that avoids conventional entropy coding. This
JSCC scheme [1], [2] consists of a wavelet transform, a scalar
embedded quantizer, and linear encoding of the quantization
indices. These three components are examined in Sections
III, IV and V. Before getting into the details of transform,
quantizer and linear code design, Section II introduces the no-
tation used throughout the paper and define the relevant system
optimization problem for JSCC based on the concatenation
of embedded quantization and channel coding in general, for
practical quantization defined in terms of an operational rate
distortion function, and practical coding defined in terms of a
certain overhead from capacity.

II. SYSTEM SETUP

For the problem at hand, the deep-space transmission chan-
nel is represented by the discrete-time complex baseband
equivalent model

yi =
√

Esxi + zi, (1)

where yi ∈ C, xi is a QPSK symbol and zi ∈ CN (0, N0) is
the complex circularly symmetric AWGN sample.

Consider a “parallel” source formed by s independent
components. A block of source symbols of length K is
denoted by S ∈ Rs×K , where the i-th row of S, denoted by
S(i) = (S

(i)
1 , . . . , S

(i)
K ), corresponds to a source component of

the parallel source.
A (s × K)-to-N source-channel code for transmitting the

source block S onto the channel (1) is formed by an encoding
function that maps S into a codeword of N QPSK symbols,
and by an encoding function that maps the sequence of channel
outputs (y1, . . . , yN ) into the reconstructed source block Ŝ.

We consider a Weighted MSE (WMSE) distortion measure
defined as follows. Let the MSE for the ith source component
be given by di = 1

KE[∥S(i) − Ŝ(i)∥2]. Then, the WMSE



distortion at the decoder is given by

D =
1

s

s∑
i=1

vidi, (2)

where {vi ≥ 0 : i = 1, . . . , s}, are weights that depend
on the specific application. In our case, these coefficients
correspond to the weights of a bi-orthogonal wavelet transform
as explained in Section III.

Let ri(·) denote the R-D function of the ith source compo-
nent with respect to the MSE distortion. Then the R-D function
of S with respect to the WMSE distortion is given by

R(D) = min
1

s

s∑
i=1

ri(di), subject to
1

s

s∑
i=1

vidi = D, (3)

where the optimization is with respect {di ≥ 0 : i = 1, . . . , s},
corresponding to the individual MSE distortions of the ith

source components. For example, for parallel Gaussian sources
and equal weights (vi = 1 for all i), (3) yields the well-known
“reverse waterfilling” formula (see [3, Theorem 10.3.3]).

For a family of successively refinement codes with R-D
functions {ri(d) : i = 1, . . . , s}, assumed to be convex
and non-increasing [4], and identically zero for d > σ2

i
∆
=

1
KE[∥S(i)∥2], the operational R-D function of the parallel
source S is also given by (3). Therefore, in the following,
R(D) is used to denote the actual operational R-D function of
for some specific, possibly suboptimal, successive refinement
code.

For a source with a total number of samples equal to Ks,
encoded and transmitted over the channel using N channel
uses, we define b = N/(Ks) as the number of channel-coded
symbol per pixel (spp). Hence, b is a measure of the system
bandwidth efficiency. Obviously, the minimum distortion D
that can be achieved at channel capacity C and bandwidth
expansion b is given by D = R−1(bC).

III. WAVELET TRANSFORM

The image is decomposed into a set of “parallel” source
components by a Discrete Wavelet Transform (DWT). Here,
we use the same DWT of JPEG2000 [5]. With W levels
of DWT, the transformed image is partitioned into 3W + 1
“subbands”. A subband decomposition example is given in
Fig. 1 for W = 3. This produces 3W + 1 = 10 sub-
bands, which in the figure are indicated by LL0, HL1, LH1,
HH1, HL2, LH2, HH2, HL3, LH3, HH3, respectively. The
subbands have different lengths, all multiples of the LL0
subband length. For simplicity, here we partition the DWT
into source components of the same length, all equal to the
the length of the LL0 subband. This yields s = 22W source
component blocks of length K = K2/s, where K × K
indicates the size of the original image. Since the DWT is a
bi-orthogonal transform, the MSE distortion in pixel domain
is not equal to the MSE distortion in wavelet domain. In our
case, for W = 3, the weight of a source component block
in subband w = {1, . . . , 10} is given by the w-th coefficient
of the vector [l6, l5h, l5h, l4h2, l3h3, l3h3, l2h2, lh, lh, h2],

where, for the particular DWT considered in this work
(namely, the CDF 9/7 [6] wavelet used by JPEG2000 for lossy
compression), we have l = 1.96 and h = 2.08.

Figure 1. W = 3, partitioning of an image into 10 subbands and 64 source
components.

The subband LL0 (that coincides with the first source
component of the parallel source model) consists roughly of a
decimated version of the original image. As explained in [7],
in order to obtain better compression in the transform domain,
Discrete Cosine Transform (DCT) is applied to subband LL0
so that its energy is “packed” into a very few, very high valued
coefficients (note the nonzero density points shown by arrows
in Fig. 2-b). These high values coefficients are separately
transmitted as part of the header and not considered here.
The remaining coefficients show sample statistics similar to
the other subbands, (see Fig. 2-c).
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Figure 2. a: Histogram of 1st source component, b: Histogram of 1st source
component after DCT transform, c: Zoomed in version of b, d-j: Histograms
of source components 2− 7, respectively.

IV. QUANTIZER

The simplest form of quantization employed by JPEG2000
is a special uniform scalar quantizer where the center cell’s
width is twice the width of the other cells for any resolution
level. This type of quantizers are called “dead-zone” quan-
tizers. In Fig. 3, an embedded dead-zone quantizer is shown
for 3 different resolution levels. The number of cells at any
level p is given by 2p+1 − 1. We indicate the cell partition at



every level by symbols {0, 1, 2} as shown in Fig.3. The scalar
quantization function is denoted as Q : R → {0, 1, 2}P , where
2P+1−1 is the number of quantization regions for the highest
level of refinement.

Figure 3. Quantization cell indexing for an embedded dead-zone quantizer
with p = 1, 2, 3

Let U(i) = Q(S(i)) denote the sequence of ternary quan-
tization indices, formatted as a P × K array. The p-th row
of U(i), denoted by U

(i)
(p,:), is referred to as the p-th “symbol-

plane”. Without loss of generality, we let U(i)
(1,:), . . . ,U

(i)
(P,:) de-

note the symbol-planes with decreasing order of significance.
A refinement level p consists of all symbol planes from 1 to
p. The quantization distortion for the i-th source component
at refinement level p is denoted by DQ,i(p).

The quantizer output U(i) can be considered as a discrete
memoryless source, with entropy rate H(i) = 1

KH(U(i)) (in
bits/source symbol). Using the chain rule of entropy [3], this
can be decomposed as H(i) =

∑P
p=1 H

(i)
p , with

H(i)
p =

1

K
H
(
U

(i)
(p,:)

∣∣∣U(i)
(1,:), . . . ,U

(i)
(p−1,:)

)
, p = 1, . . . , P.

(4)
Then, the set of R-D points achievable by the concatenation
of embedded scalar quantizer using 0, 1, . . . , P quantization
levels 1 and an entropy encoder is given by p∑

j=1

H
(i)
j , DQ,i(p)

 , p = 0, . . . , P, (5)

where, by definition, DQ,i(0) = σ2
i . Using time-sharing, any

point in the convex hull of the above achievable points is also
achievable. Finally, the operational R-D curve ri(d) of the
scalar quantizer is given by the lower convex envelope of the
convex hull of the points in (5). It is easy to see that ri(d) is
a piecewise linear function. Therefore, the resulting function
ri(d) is convex and decreasing on the domain DQ,i(P ) ≤
d ≤ σ2

i . Fig. 4 shows, qualitatively, the typical shape of the
functions ri(d).

As seen from Fig. 4, it is possible to represent ri(d) as the
pointwise maximum of lines joining consecutive points in the

1Notice: 0 quantization levels indicates that the whole source component
is reconstructed at its mean value.

Figure 4. Piecewise linear operational R-D function for the i-th source
corresponding to a set of discrete R-D points.

set given in (5). Hence, we can write

ri(d) = max
p=1,...,P

{ai,pd+ bi,p}, (6)

where the coefficients ai,p and bi,p are obtained from (5)
(details are trivial, and omitted for the sake of brevity). Using
(6) into (3), we obtain the operational R-D function of the
parallel source as the solution of a linear program. Introducing
the auxiliary variables γi, the minimum WMSE distortion with
capacity C and bandwidth expansion b is given by

Min Weighted Total Distortion (MWTD):

minimize
1

s

s∑
i=1

vidi

subject to
1

s

s∑
i=1

γi ≤ bC,

DQ,i(P ) ≤ di ≤ σ2
i , ∀ i,

γi ≥ ai,pdi + bi,p, ∀ i, p. (7)

(linear program in {di} and {γi}, that can be solved by
standard optimization tools).

Note that MWTD problem (7) is derived assuming separate
source and channel coding scheme and a capacity achieving
channel code. On the other hand, for the proposed JSCC
scheme, each refinement level (symbol plane) of each source
component is encoded separately with some practical code. For
example, consider the pth plane of the ith source component
whose conditional entropy is given by H

(i)
p , let n

(i)
p denote

the number of encoded channel symbols for this plane. The
sum

∑s
i=1

∑P
p=1 n

(i)
p yields the overall coding block length

N (channel symbols). Consistent with the definition of the
Raptor code overhead for channel coding applications [8], we
define the overhead θ

(i)
p for JSCC as the factor relating n

(i)
p

to its ideal value KH
(i)
p /C as follows:

n(i)
p =

KH
(i)
p (1 + θ

(i)
p )

C
. (8)

As shown in [1], the MWTD problem for JSCC with overheads
θ
(i)
p and entropies H

(i)
p takes on the same form of (7), where



the coefficients {ai,p, bi,p) correspond to the modified R-D
points p∑

j=1

H
(i)
j (1 + θ

(i)
j ), DQ,i(p)

 , p = 0, . . . , P, (9)

instead of (5). For given code families and block lengths, the
overhead factors θ

(i)
p are experimentally determined, and used

in the system design according to the modified optimization
problem (7). Fortunately, the overhead factors are only sensi-
tive to the entropy of the plane H

(i)
p , and to the coding block

length (which is an a priori decided system parameter). Hence
instead of finding θ

(i)
p for each i and p, one can simply find

the overheads for different entropy values on a sufficiently fine
grid.

To get an idea about the range of entropy values resulting
from deep-space image quantization, here we report the con-
ditional entropies of the first source component of an image
from the Mars Exploration Rover.2 We have:

{H(1)
1 , . . . , H

(1)
8 } =

{
0.0562, 0.0825, 0.2147, 0.4453,

0.8639, 1.1872, 1.1917, 1.1118
}
(10)

These values span the range of entropy values for all MER
images we used in this work, and can be considered as
“typical” for this application.

V. CODE DESIGN

In this section we discuss the code design for a single
discrete source of entropy H , corresponding to a symbol plane,
and the QPSK/AWGN channel with capacity C. For notation
simplicity, source and plane indices are omitted.

As discussed in Sec. I, in the proposed JSCC scheme
symbol planes are directly mapped to channel symbols. Since
symbol planes are nonbinary, i.e. {0, 1, 2}, and we consider
QPSK modulation, we consider linear codes over GF (4).
This is particularly well suited to this problem for the fol-
lowing reason. Assume that a block length of K symbols
is encoded by a systematic encoder of rate K/(K + n).
Only the n parity symbols are effectively sent through the
channel. At the receiver, the decoder uses the a-priori non-
uniform source probability for the systematic symbols and
the posterior symbol-by-symbol probability (given the channel
outputs y1, . . . , yn) for the parity symbols. It turns out that
if the physical channel is “matched”, such that the transition
probability is symmetric (in the sense defined by [9]) with re-
spect to the sum operation in GF (4), then the source-channel
decoding problem is completely equivalent to decoding the all-
zero codeword of the same systematic code, transmitted over
a “virtual” two-block symmetric channel (see Fig.5), where
the first K symbols go through an additive noise channel
over GF (4) whose noise sequence realization is exactly equal
to the source block, and the remaining n parity symbols go

2Specifically image, “1F178787358EFF5927P1219L0M1”.

through the physical channel. This equivalence holds also for
the Belief Propagation iterative decoder (see [2] for details).
Notice that the additive noise channel over GF (4) has capacity
2−H bit/symbol, where H is the source entropy. It turns out
that if we represent the symbols of GF (4) using the additive
vector-space representation of the field over GF (2), i.e., as the
binary pairs (0, 0), (0, 1), (1, 0), (1, 1) and map the “bits” over
the QPSK symbols using Gray mapping, then the symmetry
of the physical channel under GF (4) sum holds. Therefore,
systematic linear coding over GF (4) is particularly suited to
“linear index coding” of the symbol planes produced by the
embedded dead-zone quantizer and for the QPSK/AWGN deep
space communication channel.

Figure 5. Block memoryless channel with two symmetric channel compo-
nents

Given this equivalence, it turns out that the optimization
of a linear systematic code ensemble for the source-channel
coding problem is obtained through the more familiar opti-
mization for a channel coding problem, where the channel is
composite, and consists of two blocks, one discrete symmetric
quaternary DMC with capacity 2 − H , and one quaternary-
input continuous output symmetric channel induced by (1) and
by Gray mapping, with capacity 0 ≤ C ≤ 2 (that depends on
the SNR

∆
= 10 log10 Es/N0).

Different symbol planes may have different entropies and
therefore they may result in codes with different overhead
values for various SNR conditions. Nonuniversality of Raptor
codes is shown in [8] using the fact the Stability Condition on
the fraction of degree-2 output nodes depends on the channel
parameter for Binary Symmetric and Binary Input AWGN
channels. Following the derivation in [8], we established
a stability condition on degree-2 output nodes which is a
function of both H and C. Hence the code ensembles must
be optimized for each pair of (H,C) values. In this paper,
we consider the optimization of Raptor codes over GF (4)
for various H and C pairs chosen with respect to a fine
grid spanning the typical range of the source symbol plane
entropies (see (10)) and the typical range of deep space
channel capacities [10].

In order to optimize the Raptor code ensembles, we consider
an EXIT chart and linear programming method inspired by [8]
and [9], extended to handle the two-block memoryless channel
as in Fig. 5.



A. EXIT CHART ANALYSIS

Figure 6. Raptor Code with LDPC outer code

EXIT chart analysis for the JSCC scheme using Raptor
codes can be found in [2] for the binary case. The derivations
of [2] can be easily modified to the case of nonbinary codes,
under the symmetry “matched” condition said above, and
using a Gaussian approximation as in [9], the conditional
distribution of each message L is ∼ N (µ1,Σµ) where
[Σµ]i,j = 2µ for i = j and [Σµ]i,j = µ for i ̸= j. Letting
V the code variable corresponding to the edge message L, we
define the mutual information function

J(µ)
∆
= I(V ;L) = 1− E

[
log4

(
1 +

3∑
i=1

e−Li

)]
.

We use base-4 logarithm for mutual information calculations,
hence in these sections H and C are in units of two bits
per source symbol or per channel symbol, respectively. We
first introduce the necessary notation and then write the EXIT
equations for our problem.

A Raptor code is formed by the concatenation of a pre-
code, here implemented by a high rate regular LDPC code,
and an “LT” code, which is a low-density generator matrix
code with a special generator matrix degree distribution [8].
For the Tanner graph of the LT code, we define the input nodes
and the output nodes. For the Tanner graph of the LDPC code,
we define the variable nodes and the check nodes (see Fig. 6).

EXIT charts can be seen as a multidimensional dynamic
system. The EXIT “state variables” are x, y,X and Y defined
as follows (See Fig. 6) :
x denotes the average mutual information between a randomly
chosen input node symbol and a message sent on a left-bound
adjacent edge (from input to output nodes).
y denotes the average mutual information between a randomly
chosen input node symbol and a message sent on a right-
bound adjacent edge (from output to input nodes).
X denotes the average mutual information between a
randomly chosen variable node symbol and a message sent
on a right-bound edge (from variable to check nodes).
Y denotes the average mutual information between a
randomly chosen variable node symbol and a message sent

on a left-bound edge (from check to variable nodes).

The various degree distributions for the Tanner graph in
Fig. 6 are defined as follows:

• For the LDPC code, we let λ(x) =
∑

i λix
i−1 and

ρ(x) =
∑

j ρjx
j−1 denote the generating functions of

the edge-centric left and right degree distributions, and
we let

Λ(x) =
∑
i

Λix
i =

∫ x

0
λ(u)du∫ 1

0
λ(u)du

,

denote the node-centric left degree distribution.
• For the LT code, we let ι(x) =

∑
i ιix

i−1 denote
the edge-centric degree distribution of the input nodes,
and we let ω(x) =

∑
j ωjx

j−1 denote the edge-centric
degree distribution of the “output nodes”. The node-
centric degree distribution of the output nodes is given
by

Ω(x) =
∑
i

Ωjx
j =

∫ x

0
ω(u)du∫ 1

0
ω(u)du

.

• For the concatenation of the LT code with the LDPC code
we also have the node-centric degree distribution of the
LT input nodes. This is given by

(x)ג =
∑
i

ixiג =

∫ x

0
ι(u)du∫ 1

0
ι(u)du

.

Note that for large number of nodes we have the follow-
ing approximation for (x)ג ∼ eα(x−1) =

∑
n

αne−α

n! xn

where α =
∑

i iiג is the average node degree for the input
nodes [8]. Hence ι(x) is approximated by the following
coefficients

ιi =
αi−1e−α

(i− 1)!
. (11)

Then, the LT EXIT equations are given by:

x =
∑
k

∑
i

ΛkιiJ((i− 1)J−1(y) + kJ−1(Y)), (12)

y = 1−
∑
j

ωj

{
γJ((j − 1)J−1(1− x) + J−1(H))

+(1− γ)J((j − 1)J−1(1− x) + J−1(1− C))
}
, (13)

where γ = K/(K + n). Eq. (13) follows from the fact that
a random edge (o, v) is connected with probability γ to a
source node (i.e., to the channel with capacity 1−H symbols
per channel use), while with probability 1−γ to a parity node
(i.e., to the channel with capacity C). It is also easy to see
that γ = rltrldpc, where rlt and rldpc denote rate of the LT
code and rate of the LDPC part respectively.

The LDPC EXIT equations are given by:

X =
∑
k

∑
i

λkגiJ((k − 1)J−1(Y) + iJ−1(y)), (14)

Y = 1−
∑
ℓ

ρℓJ((ℓ− 1)J−1(1− X)). (15)



Eqs. (12), (13), (14), and (15) form the state equations of the
global EXIT chart of the concatenated LT – LDPC graph with
parameters H,C and γ, and the degree sequences ω, ι, ρ and
λ.

Let µj denote the mean of the LLR of a source variable
node connected to a checknode of degree j, given by

µj = J−1
(
1− J

(
jJ−1(1− x)

))
+ J−1(1−H).

Then, the average symbol error rate (SER) of the source
symbols can be approximated by

Pe =
∑
j

Ωj

[
1−Q3

(
−
√
µj

2

)]
. (16)

B. LT Degree Optimization

For simplicity, we fix the LDPC code to be a regular (2, 100)
code (rldpc = 0.98). For this LDPC code, we find the mutual
information threshold Y0 (using (14) and (15)) such that when
y = Y0 is the input, then the LDPC EXIT converges to Y = 1.
The value of Y0 depends on the LT input degree distribution
ι(x), which in turns depends on α via (11). Fig. 7 shows Y0

as a function of α. On the other hand, as seen from (14) and
(15), Y0 does not depend on H or C. Hence, for a fixed α,
we can use the same Y0(α) threshold for all H,C pairs.
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Figure 7. LDPC mutual information threshold vs α

Next, we use (12) and (13) to eliminate x and write y
recursively. Note that the recursion for y depends on the
input Y coming from the LDPC graph. For simplicity, we
decouple the system of equations (14-15) and (12-13) by fixing
the LDPC and the target mutual information Y0(α), and by
disregarding the feedback from LDPC to LT in the BP decoder.
Therefore, we let Y = 0 in (12). The recursion function
fH,C,γ,α
j (y) for a degree-j output node is given in (17) on

the top of the next page. At this point, the LT EXIT recursion
converges to the target Y0 if

y < 1−
∑
j

ωjf
H,C,γ,α
j (y), ∀y ∈ [0,Y0(α)] (18)

We sample the interval [0,Y0(α)] on a fine grid of points,
and obtain a set of linear constraints {ωi} for fixed γ. The

objective of this optimization consists of maximizing γ (the
code rate) for a given H,C pair, where the optimization is
with respect to {ωi} and α. Since the LDPC code is fixed, γ
is just a function of rlt = 1

α
∑

j ωj/j
. In order to linearize the

constraints in {ωi} we approximate γ in (18) with its ideal
value, i.e., C/(C +H), arguing that for a good code design,
γ should be close to C/(C +H).

The resulting optimization problem is given by:

minα min{ωj} α
∑
j

ωj

j

s. t.
∑
j

ωj = 1, ωj ≥ 0,

yi < 1−
∑
j

ωjf
H,C, C

C+H ,α

j (yi),

∀yi ∈ [0,Y0(α)]. (19)

For fixed α, the inner optimization problem in (19) is a linear
program in terms of {ωi}. The outer maximization of the
coding rate rlt can be obtained through an educated search
over the value α, for each pair (H,C). With some more
effort, it is also possible to write the stability condition for the
degree-2 output nodes, that reads Ω2 ≥ g(H,C, γ), for some
complicated function g(·) omitted here for brevity. Differently
than in the classical memoryless stationary channel case, in
our case γ appears in the condition in a non-linear manner.
Therefore, instead of including the stability condition as a
constraint in the optimization, we simply check that the result
of the optimization satisfies the stability condition (otherwise,
it is discarded).

VI. RESULTS

In this section, we present in some details the deep space
image transmission scheme currently employed by JPL -
MER (Mars Exploration Rover) Mission. This scheme, that
represents the benchmark for comparison to the JSCC scheme
presented in this paper, is based on a separated approach in-
cluding a state-of-the-art image compressor, called ICER [11],
and state-of-the-art channel codes for deep space transmission.
ICER is a progressive, wavelet-based image data compressor
based on the same principles of JPEG2000, including a DWT,
quantization, segmentation and entropy coding of the blocks
of quantization indices with arithmetic coding and an adaptive
probability model estimator based on context models. These
blocks have differences with respect to their counterparts in
JPEG2000 to handle properties of deep-space communication
(details can be found in [11]).

ICER partitions an image into segments to increase robust-
ness against channel errors. A segment “loosely” corresponds
to a rectangular region of the image. Each image segment is
compressed independently by ICER so that decoding error due
to data loss affecting one segment has no impact on decoding
of the other segments. The encoded bits corresponding to all
the segments are concatenated and divided into fixed-length
frames, that are individually channel encoded with a fixed
channel code rate Rc ∈ Rc, where Rc denotes a finite set
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(17)

of possible coding rates. The channel coding rate is chosen
according to the channel SNR.
Rc can be chosen from a set of different code rates Rc

according to channel conditions.
A segment is generally divided into several frames. Data

losses occur at the frame level. A whole segment is discarded
even if a single frame corresponding to that segment is lost.
When a frame loss occurs, it typically affects single segment.
But it could affect two segments if the lost frame straddled the
boundary between two segments. If a fixed PSNR3 value is
targeted, the discarded segments must be re-transmitted. Note
that the delay and the cost of retransmission and feedback is
significant when deep space image transmission is considered.
In contrast, for the proposed JSCC we do not consider any
retransmission.
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Figure 8. FER vs Eb/No curves for block length 16 K

In order to compare the performance of the proposed JSCC
scheme with that of the baseline scheme, we first consider an
experiment where a target PSNR is fixed. For both schemes,
the bandwidth expansion factor b for fixed target PSNR
depends on the particular image and on the channel SNR,
Es/N0. For a given set of test images 4, we compare the
two schemes in terms of b versus Es/N0, for the fixed target
PSNR.

As explained above, when a frame is lost, the whole segment
is retransmitted. Frame Error Rate (FER) is assumed to be

3PSNR = 10 log10
2i−1
D

where i = 12 since for MER mission each pixel
is a 12-bit value in the original image.

4Provided by JPL-MER Mission Group.

fixed during the entire transmission process. Then the number
of transmissions necessary for a segment is a geometric
random variable with success probability depending only on
the FER and the number of frames corresponding to the
segment’s data, denoted by F . Therefore, the expected number
of transmissions for a segment is given by,

Z = (1− FER)−F .

Although this analysis is not exact, since the number of
frames spanning each segment is not constant, in general, and
some frame may straddle across two segments, nevertheless we
can find tight upper and lower bounds to the average number of
channel uses necessary to achieve the target PSNR, for given
channel SNR and chosen coding rate Rc (details are given in
[7]).

For a given SNR value, the baseline scheme chooses a
code from standard JPL codes. For a well matched SNR and
rate pair, the FER is very low that expected number of re-
transmission is insignificant, then b is very close to the “one-
shot” transmission value, i.e. B/(2Rc) where B is the total
number of ICER-encoded bits for the image at the given target
PSNR.

For a given code rate, as the SNR increases beyond the
matched point, b will stay fixed, since re-transmissions are
getting more and more insignificant. On the other hand, when
SNR is lower than the matched point, the FER increases
significantly and re-transmissions become significant. In this
case, b rapidly increases and becomes much larger than its
minimum value B/(2Rc). If SNR is very low with respect to
a given channel code, then it might be more advantageous to
switch to a lower rate code.

For the example considered in this paper, the target PSNR
is 49 dB and the image used is 1024 × 1024 Mars image
provided by JPL5.

In Fig.9, we compare the b vs SNR performances of JSCC
and of the baseline scheme. For JSCC, nonbinary code design
is considered, but one can also use binary codes after dividing
each nonbinary symbol plane into two bitplanes. This approach
is taken in [7], where binary Raptor codes and protograph
based binary LDPC codes are used (See [7] for details on
these codes). Here we compare all of these cases for the sake
of completeness.

- The (∗)-curve corresponds to considering ideal capacity
achieving codes for each plane in the JSCC scheme. For
the range of PSNR values relevant to the MER mission, the
pure compression rate (source coding only) for the scheme
considered here and ICER are essentially identical (see [7]
for further details on pure compression). Then, if ideal codes

5The name of the Mars image is 1F178787358EFF5927P1219L0M1.pgm



are assumed for both JSCC and the baseline scheme, the
bandwidth efficiency of both schemes is the same. Hence the
(∗)-curve represents the best possible performance for both
schemes, assuming ideal capacity achieving channel codes.

- Very tight upper and lower performance limits (actually
overlapping as seen in Fig. 9) for the baseline scheme are
shown by a combination of 4 knee-shaped curves, each of
which corresponds to one of the codes whose FER perfor-
mance is shown in Fig. (8) (see [10], [12] for details). The
separated scheme requires several retransmissions of some
blocks in the regimes of SNR for which the FER of selected
code is significant. If for some reason (e.g., atmospheric
propagation phenomena) the channel SNR worsens, eventually
the separated scheme must decrease the coding rate and jump
to the next available lower rate code. Hence the baseline
scheme’s performance is given as the lower envelope of these
4 curves. Rc value corresponding to each curve is also shown
in Fig. 9.

- (×)-curve is the result of EXIT calculations for protograph
LDPC codes while (+)-curve is the finite length results of the
same codes.

- (−)-curve is the result of EXIT calculations for binary
Raptor codes when the LDPC code described in Sec.V-B
is used with the LT degree distribution in (20). Shokrollahi
reported this degree distribution in [13] to be used for erasure
channels. (−−)-curve corresponds to finite length simulations
of the same degree distribution.

Ω(x) = 0.008x+ 0.494x2 + 0.166x3 + 0073x4 + 0.083x5+

0.056x8 + 0.037x9 + 0.056x19 + 0.025x65 + 0.003x66. (20)

EXIT chart analysis result for nonbinary Raptor Codes when
the same code (i.e. with no degree optimization) is used is
given by (−.)-curve.

- As discussed in Sec.V, we described a method for degree
optimization when the α parameter and LDPC code is fixed.
Choosing the α parameter optimally for each H,C pair is a
non-trivial task. Hence we only run the degree optimization
linear program for each H,C pair using the α value given
by the EXIT chart analysis of classic LT sequence (i.e. (−.)-
curve). For the (−.)-curve, we fixed the ω(x) distribution
by (20). Then, γ depends only on the α parameter. As the
required rate, i.e. γ necessarily varies with respect to H,C, α
parameter of the code changes as well. (◦)-curve is obtained
after optimizing the nonbinary codes for each H,C pair using
the α value given by the EXIT chart analysis of nonbinary
Raptor codes when (20) is used. Note the improvement with
respect to non-optimized (−.)-curve, although an outer opti-
mization on α is not run.

From Fig. 9, we observe that the performance of the JSCC
scheme assuming ideal codes, (∗)-curve, is better than the
baseline scheme in two different aspects. First, the required
b value is lower for any channel condition. Second, the
JSCC linear encoding together with the MWTD optimization
can provide a “smooth” trade-off unlike the “knee” shaped

curves of the separated scheme. In Fig. 9, we observe that
infinite length nonbinary Raptor codes are competitive with
the lower envelope of the baseline scheme. We believe that
the infinite length results can be further improved using the
outer optimization on α values.

For finite length results we first focus on Es/N0 = 3 dB
point where finite length results are obtained with classic LT
sequence and optimized LT sequences. The finite length results
of optimized and non-optimized sequences are indicated in
Fig. 9 with a ⋄ and �, respectively. Both the ⋄ and � are
significantly above the baseline scheme’s curve. Note that at
Es/N0 = 3 dB, the channel code (Rc = 3/4) of the baseline
scheme is at its matched point with the given SNR. Note that
the baseline scheme switches to Rc = 1/2 around 2.8 dB.
b value of the baseline scheme significantly increases even
passes the ⋄ point as SNR gets lower due retransmissions
keeping a fixed PSNR value. JSCC is designed to be robust
to mismatched channel conditions hence JSCC can work with
the same value of b given by the vertical height of ⋄ point.
Note that keeping b fixed also avoids extra transmission delay
and cost. Obviously due to mismatched channel conditions,
there will be residual error in plane reconstructions. But as
seen in Fig. (10-14) PSNR is gracefully degraded and the
image quality given in these reconstructions are perceptually
acceptable depending on the application since there are no
artificial “block effects” due to loss segments.

Figure 10. Original image 1F178787358EFF5927P1219L0M1.pgm
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