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Abstract— In applications such as telesurgery, it is required
to transmit haptic signals to a remote location with a delay of
at most few milliseconds. To reduce the packet rate and yet
retain perceptual quality, adaptive sampling has been explored
in the literature. In particular, in earlier work we propose d and
analyzed an adaptive sampling scheme based on Weber’s law
of perception. In this paper, we explore other possible adaptive
sampling candidates. We describe an experimental setup where
users are subjected to piecewise constant haptic stimuli towhich
they can respond with a click. We record the clicks and ask the
question: can we identify signal features and classiers to predict
the clicks? The answer suggests adaptive sampling schemes that
improve over Weber sampling.

I. I NTRODUCTION

As devices for sensing and rendering of haptic signals pro-
liferate, it is natural to ask if haptic signals can be effectively
communicated over an existing communication network such
as the internet. In order to maintain stability and good quality
of perception, it is common in closed loop systems - such
as the teleoperation system ([4], [6], [19], [23]) - to sample
haptic signals in excess of 1 KHz. To avoid delays, only a
few samples can be encapsulated into a data packet, and this
leads to a high packet generation rate, which is not desirable.
Thus the question arises whether we can use adaptive sampling
(that is, sampling that depends on the signal) to transmit
only perceptually significant portions of the haptic signaland
reduce the average packet rate? This paper aims to develop
insight into good structures for adaptive sampling of haptic
signals.

In the recent past, several authors have attempted the
compression of haptic signals. For example, [27] uses adap-
tive sampling along with differential pulse code modulation
(DPCM) to compress haptic signals, [31] exploits the sparsity
of the discrete cosine transform (DCT), and [25] uses pre-
dictive coding based on the least squares method and median
filtering. These methods process blocks of data and introduce a
processing delay, which is not suited for real time applications.
For real time applications, several authors have attemptedto
exploit Weber’s law of perception to sample the haptic signal
- see for example [10], [11], [15], [16], [17], [18], [20],
[26], [29], [32], [33]. Weber’s law postulates that perception
depends on percentage change in the signal with respect to a
reference, and hence if Weber’s law is true, then we only need

to sample at points where the percentage change is high. This
main idea is exploited for adaptive sampling of haptic signals
in [15], [18]. In [10], the deadband behavior of the Weber’s law
is used to reduce the impact of delay in teleoperation. In [16] ,
multi-dimensional haptic data is considered. A comparisonof
fixed rate sampling and adaptive sampling based on Weber’s
law is given [33]. In [11], a Weber sampler motivated by these
other works is defined and analyzed in detail. In particular,[11]
provides expressions for the sampling rate and inter-sample
time of the Weber sampler for a wide class of smooth signals.

While Weber’s law is well studied, the exact nature of haptic
perception is not fully understood (see for example [8], [13],
[24]). A basic question is whether in a typical environment
some other sampling strategies work as well as the Weber
sampler or even better? In this paper, we present evidence
that some other simple adaptive strategies may be as good or
better than those based on Weber’s law. We describe a response
prediction experiment where we use a Phantom Omni haptic
device [2], [28] along with HAPI [1], [21] to subject users to
a haptic force. The force is generated to be piecewise constant
and the instants of jump are clearly identified as the only points
that are perceptually significant. We ask the user to click a
stylus whenever he/she feels a perceptible change in the force.
We record the clicks of the user for a large number of signals.
After accounting for the response time of the user, we can
label each jump in the haptic signal as “perceived” (label 1)or
“not perceived” (label -1). Using this labeled data, our aimis
to build classifiers that use suitable features of the signals and
predict the labels of the jumps in the signal. Our thesis behind
this approach is that a classifier with high accuracy captures
the perceptually important structure in the signal and can also
be used for sampling the signal. Since we are interested in
causal adaptive samplers, we restrict our attention to classifiers
based on causal features. Specifically, we use classifiers based
on Weber’s law, level crossings, and linear regression. The
first two classifiers depend only on the signal value at the
latest two jumps and we show evidence that incorporating even
further past samples improves accuracy but only marginally.
We find that the level crossings based classifier has a slight
edge over the Weber’s law based classifier, but the gain in
accuracy is within a standard deviation (computed based on
40 runs of hold-out cross-validation). The Weber and level



Fig. 1: Experimental set up, user holding the device to feel
the force

crossings classifiers have about 93% accuracy and there are
natural adaptive samplers based on these classifiers. These
classifiers are based on the latest two jumps of the signal.
We also propose a classifier based on linear regression of the
latest three jumps in the signals and we find that it attains
an accuracy of about 95%. Thus the addition of further past
samples helps, but the impact is limited.

We note that the classifiers we have identified are not the
only ones and even more sophisticated classifiers can be em-
ployed. (We hope to report more such results in a subsequent
publication.) Our main point is that we can take a completely
data driven approach to synthesizing good candidates for
adaptive samplers: we can build classifiers that work well
on the experimental data and each such classifier gives us
a potential adaptive sampler. In particular, we have identified
two classifiers which perform better than the Weber classifier
and hence adaptive samplers corresponding to them are also
of interest. Adaptive samplers designed with this approachcan
then be tested by more experiments to study their compression-
distortion tradeoff, but this is beyond the scope of this paper.

We also note that our aim isnot to study laws of perception.
Our focus in on classification of perceptually significant points
in the haptic signals in arealistic environment. Hence we
do not make any special effort to isolate the user from
any ambient disturbances. Our data is collected over several
weeks with varying ambient conditions and yet we get good
classification accuracy. This further underscores the utility
of the classifiers (and their associated features) in realistic
environments.

The paper is organized as follows. In Section II, we describe
the experimental setup and labeling of the data. In Section
III, we describe the parameter learning for the classifiers,and
compare the accuracy of the classifiers. The conclusion is
given in Section IV.

II. EXPERIMENTAL SET UP

In this section, we describe the our experimental setup and
data collection process.

A. The Haptic Device

We use a Phantom Omni [2], [28] haptic device along with
HAPI [1], [21], an open source software platform, to calculate
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Fig. 2: Histograms of response time for stair-case signals with
different time spacing.

and send a kinesthetic haptic force to the user. A fire wire port
is used to communicate between a computer and the haptic
device. The relevant specifications of the haptic device areas
follows.

1) Maximum force : 3.3N
2) Force feedback workspace : Width 160mm, Height

120mm, Depth 70mm
3) Force update frequency: maximum of 1 KHz, that is,

once every msec.

The haptic device has a detachable stylus, which can be held
like a pen as shown in Figure 1. The stylus has six degrees of
freedom, but we only consider 1-D haptic force in this paper.
The stylus has two programmable buttons and one button is
used to record the response of the user, who feels the haptic
force by holding the stylus and presses the button on the stylus
if he/she perceives a change in the force.

B. Signal

We use piecewise constant signals since the jumps in such
signal are clearly the only points where the perception can
change. This allows us to associate user response with specific
points in the signal. The signals we generate have a parameter
T0 - the time separation between the jumps. For a given
signal, T0 is fixed and we considerT0 in the range of 0.8
to 3.0 seconds. Thus the signal changes values only at the
time instantsT0, 2T0, 3T0, ... and is constant in between these
time instants.

The value of the signal at timenT0 is generated indepen-
dently of all previous values and is generated with a uniform
distribution over the range[0, 3]. This ensures that we cover
almost the entire force range of the haptic device. If the signals
have a pattern, such as an increasing or decreasing staircase,
then the human mind can potentially anticipate such patterns.
Hence we have used random signal levels, which ensure that
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Fig. 3: A typical realization of the force signal and its labeling.
The black dots represent jumps that are perceived. The red dots
represent jumps that are not perceived.

there are no specific patterns in the signal that can bias the
perception of the signal.

C. Recording Response and Labeling Jumps

As explained above, the user is subjected to a 1-D kines-
thetic force signal and is asked to press the button of the haptic
device whenever he/she feels a change in the force. The human
response has a non-zero delay and also each button press is
not instantaneous but lasts for a few milliseconds. We need
to account for these factors in our experiments andT0 cannot
be too small. To determine the response time, we generated
25 runs of an increasing staircase signal for different spacing
between the steps. After each jump in the signal, we record
the time instants (with a resolution of 1 msec) when the button
is pressed. In Figure 2, we plot the histograms of the response
time. We see that it varies between 200 to 500 msec. Hence
in all our experiments, we have chosenT0 ≥ 0.8 seconds.
We also note that as the spacing between the jumps in the
staircase increases, the response concentrates more (roughly
around 300 msecs).

Once we have ensured thatT0 is large enough so that the
response to a jump does not spill over to the next interval, it
is easy to label the jumps of the signal. We say that a user has
perceived a jump if we record a click from the user within the
interval of lengthT0 following the signal jump. Otherwise the
signal jump is labeled as not perceived. A typical realization
of the signal and the corresponding labels are illustrated in
Figure 3.

D. Data Statistics

In this paper, due to space constraints, we report results
for one user; we hope to report results for more number of
users in subsequent publications. The user’s sole task is tofeel
the force and give his/her feedback by clicking the button on
the stylus. We note that our goal is not to propose laws of
perception, but merely to classify jump points as perceivedor

not in a realistic environment. Hence we have not made any
special efforts to screen the user from other distractions,but
neither have we subjected the user to any explicit distraction.
The data has been collected over about four weeks and thus
spans a variety of ambient conditions. Each signal is chosen
to have 100 jumps and hence it is of duration100T0. Since
T0 varies from 0.8 to 3 seconds, the signal duration varies
from 80 seconds to 300 seconds. For eachT0, we subject the
user to 25 independent runs over a period of few hours. Thus
for each time spacingT0, we have 2500 labeled jumps. For
T0 = 1 second, the fraction of perceived jumps is about 85%.

III. C LASSIFICATION OF JUMPS IN THE SIGNAL

Our aim is to study choice of features and classifiers which
predict the label based on these features. In Section III-B,
we study a feature and a classifier suggested by Weber’s law.
In Section III-C, we study a feature and classifier based on
level crossings, and also show that additional improvement
is possible using classifiers based on further past samples and
linear regression. But first we state the method of performance
evaluation.

A. Performance Evaluation Methodology

We consider a number of different classifiers. IfXXXn denotes
the feature vector used by the classifier,Yn ∈ {−1, 1} is the
true label, andh(·) is the classifier, then the error rate of the
classifier is

EH =
1

N

N
∑

i=1

1(h(XXX i) 6= Yi). (1)

The classifier may have parameters that we would like to
optimize and we also use other alternate expressions for the
error rate in subsequent sections.

For training of the classifier and evaluating its performance,
we use holdout cross-validation [22]. Consider the collection
of all jumps in the different runs for a fixedT0. We randomly
split the set of jumps into two equal parts such that each part
has the same proportion of labels as the original data, that
is, we usestratified sampling. One part is used for training
and the other for testing. To ensure that the results are not
biased by a specific partitioning of the data, we repeat this
procedure independently 40 times and report the error rate of
the classifiers averaged over the 40 realizations.

B. Weber Classifier

The Weber’s law states that perception depends on percent-
age changes in signals and in addition to haptics it has been
reported for a variety of other perceptual signals such as vision,
audio, smell (see for example [5], [12], [14], [30]). At the
nth jump of the signal, letXn denote the signal value, and
let Xn−1 be the value before the jump. Then Weber’s law
suggests that the jump is perceived if and only if

∣
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∣

∣

Xn − Xn−1

Xn−1

∣

∣

∣

∣

≥ δ. (2)

whereδ > 0 is the Weber constant. We call this as the Weber
classifier and we minimize its error overδ using the training



Pulse duration Ew σ of Ew δopt σ of δopt

in seconds
0.8 0.07666 0.00475 0.12944 0.00479
1.0 0.06342 0.00500 0.12674 0.00399
1.5 0.08416 0.00559 0.12628 0.00535
2.0 0.07411 0.00507 0.13665 0.00456
2.5 0.06345 0.00534 0.11654 0.00460
3.0 0.06220 0.00534 0.11655 0.00429

TABLE I: Weber classifier
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Fig. 4: Scatter plot of the stair case signal with time spacing
1s. nth sample is present sample and(n − 1)th sample is
the previous perceived point. Blue and red points represent
perceived and not perceived points respectively with respect to
previous perceived point. Black lines are the Weber boundaries
as suggested by Weber classifier. Slopes of these boundaries
are determined by Weber constantδ.

set. LetR be the total number of runs and letIr be the jumps in
runr that are part of the training set. Then, for the optimization
of the parameter, it is convenient to express the error rate for
this classifier in the following form:

Ew(δ) =
1

4N

R
∑

r=1

∑

i∈Ir

(Yi−sign((Xi−Xi−1)
2−(δXi−1)

2))2.

(3)
We note that if the classifier is correct, then the summand
is zero, but otherwise it takes the value 4, and hence we
have a factor of1/4 outside the sum. Based on a plot of the
error rate as a function ofδ we believe that there is a single
global minimum and the gradient descent algorithm can find
this minimum. Since sign(x) is discontinuous, for the sake of
implementing the gradient descent algorithm, we replace itby
the hyperbolic tangent functiontanh(10x). Once the optimal
parameter is learnt for the training set, we apply the classifier
with the optimal parameter to the test dataset.

In Table I we summarize the results for the Weber classifier.
We see the average error rate across 40 holdout realization is

Pulse duration El σ of El copt σ of copt

in seconds
0.8 0.07467 0.00519 0.23608 0.00654
1.0 0.06008 0.00543 0.24183 0.00551
1.5 0.07821 0.00562 0.24200 0.00614
2.0 0.07524 0.00617 0.25775 0.00740
2.5 0.06015 0.00619 0.20462 0.00649
3.0 0.05815 0.00472 0.21413 0.00538

TABLE II: Level crossing classifier

quite small - in the range of 6-8%. The standard deviation
is an order of magnitude smaller, indicating that the error
rate estimate is quite good. The optimal value ofδ (averaged
over the 40 holdout realizations) varies from 11.6% to 13.6%,
which is in the same range as studies of the Weber constant
in prior literature (see for example [3], [7]). There does not
appear to be any specific relationship betweenT0 and δopt,
but for largest two values ofT0 considered,δopt is smallest.

In Figure 4, we illustrate the Weber classifier for the case
of T0 = 1 second. We see that the classification errors are
primarily for very small or very large amplitudes. In the next
section, we see that we can improve over the Weber classifier.

C. Classification Based on Level Crossings and Linear Re-
gression

Instead of looking at percentage change as in the case of
the Weber’s classifier, we could look at absolute difference:
Classify as 1 if|Xn − Xn−1| > c, else classify as -1. We
call this the level crossings classifier. The error rate of this
classifier depends on the parameterc and we can write it in
the form

El(c) =
1

4N

R
∑

r=1

∑

i∈Ir

[

Yi − sign
(

(Xi − Xi−1)
2 − c2

)]2

(4)

where the summation is over all samples in the training set.
To find the optimalc, we once again replace sign(x) by
tanh(10x) and use the gradient descent algorithm. The use
of gradient descent is based on our observation that a plot
of the error rate with respect toc reveals a single global
minimum. The classifier is applied to the test set using the
optimal parameter value found on the training set.

In Table II, we show the average and variance of the error
rate and the optimal value ofc computed over 40 realizations
of the holdout. We see that the level crossings is quite good
with an error rate in the range of 6-8 %. It is consistently better
than the Weber classifier, but the gain is within one standard
deviation of the error rate. The optimal value ofc varies from
0.2 to 0.25 N and there does not appear to be any specific
relation between the optimal value andT0. In Figure 5, we
illustrate the level crossings classifier for the case ofT0 = 1
second.

The success of the level crossings classifier raises a natural
question: can a more complex linear regressions improve
performance further? To answer this question, we consider a
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Fig. 5: Scatter plot of the stair case signal with time spacing
1s. nth sample is present sample and(n − 1)th sample is
the previous perceived point. Blue and red points represent
perceived and not perceived points respectively with respect
to previous perceived point. Black lines are the level crossings
boundaries as suggested by level crossings classifier. Intercept
of these lines on the axes are determined by constantc.

classifier that declares 1 if

|a0Xn + a1Xn−1 + a2Xn−2| ≥ 1 (5)

and declares a -1 otherwise, wherea0 > 0, a1 anda2 are real
valued constants. The level crossings is a special case with
a0 = −a1 = 1/c anda2 = 0. The error rate can be expressed
as

Eg(a0, a1, a2)

=
1

4N

R
∑

r=1

∑

i∈Ir

[

Yi − sign
(

(a0Xi + a1Xi−1 + a2Xi−2)
2 − 1

)]2

(6)

The error rate depends on the three parameters and in general
it appears to have several local minima. Hence, we cannot use
the gradient descent algorithm. To ensure that we do not get
trapped in a local minima, we use the simulated annealing
algorithm (see for example [9]). The simulated annealing
algorithm is initialized with a random state. The neighborsof
the current state are selected from a Gaussian distributionwith
the current state as the mean and a standard deviation of 0.5.
The algorithm has a temperature parameter, which is initialized
to 50. For a given temperature, we run 5000 iterations of
simulated annealing. Then we reduce the temperature by 10%
and continue the iterations. The algorithm is stopped when the
temperature falls below 0.01 or the number of steps exceeds
100,000. With these parameters, it takes more than 20 hours
to compute the optimal parameter values for our datasets.

In Table III, we show the parameter values and error rate
of the linear regression based estimator averaged over 40

Pulse duration Eg a2 a1 a0

in seconds
0.8 0.05178 -0.27078 -4.47695 4.81312
1.0 0.04553 -0.22298 -5.52813 5.85001
1.5 0.07630 -0.27793 -4.79109 5.10514
2.0 0.06211 -0.08375 -5.11101 5.24511
2.5 0.04159 -0.14616 -4.79609 5.06772
3.0 0.04673 -0.13988 -5.13003 5.34953

TABLE III: Linear Regression Based Classifier

realizations of holdout. We see a clear improvement over the
level crossings classifier, and except for the case ofT0 = 1.5
second, we see that the gain in accuracy is about 2%. Since
the accuracy of level crossings is already around 93%, this
additional increase, is small. We see thata0 and a1 have
similar magnitudes and opposite sign for all values ofT0.
Also a2 has a much smaller magnitude thana0, a1. The level
crossings classifier has parameters with the same behavior
(a0 = −a1 and a2 = 0) and it is not surprising that it does
well. For larger values ofT0, a2 takes smaller values, that is,
the importance ofXi−2 diminishes. Thus for largerT0, there
is a higher tendency to ‘forget’ the more distant pastXi−2.

IV. CONCLUSION

In order to identify good adaptive sampling strategies for
haptic signals, in this paper we record the response of a
user to several haptic signals and classify the perceptually
significant points as perceived or not perceived. Our thesis
is that classifiers that work well should be considered as
candidates for building adaptive sampling strategies. Ourre-
sults show that we can improve over the Weber classifier,
whose corresponding sampler - the Weber sampler - has been
studied by many authors. The level crossings classifier is
marginally (but consistently) better than the Weber classifier,
and about 2% further improvement is possible by considering
further past samples and a linear regression based classifier.
However, since the Weber classifier itself has good accuracy-
in excess of 92% - the additional gain has limited value. The
ideas of level crossings and linear regression can be easily
incorporated in adaptive sampling strategies. Based on our
results, we think that there are a number of simple classifiers
and associated sampling strategies that may perform as well
or better than those based on Weber’s law. In this sense, the
import of Weber’s law for sampling of haptic signals in a
realistic environment is limited, even though its performance
is good. More analysis of implementation complexity and
rate-distortion tradeoff needs to carried out to understand
which sampling mechanisms are most suited in applications.
In addition, it is possible to consider more sophisticated
classifiers, which have the potential to be better. In future
work, we hope to pursue such data analysis including data
from several users.

REFERENCES

[1] www.h3dapi.org, july 2012. Phantom omni device reference.



[2] www.sensable.com/haptic-phantom-omni.htm, july 2012. Phantom omni
device reference.

[3] M. Akay. Force and touch feedback for virtual reality [book reviews].
Proceedings of the IEEE, 86(3):600, march 1998.

[4] R. Anderson and M. Spong. Bilateral control of teleoperators with time
delay. Automatic Control, IEEE Transactions on, 34(5):494 –501, may
1989.

[5] B.C.Moore. Cochelear Hearing loss: Psychological and Technical
issues. John Wiley, Chichester, 2007.

[6] P. Berestesky, N. Chopra, and M. Spong. Discrete time passivity in
bilateral teleoperation over the internet. InRobotics and Automation,
2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on,
volume 5, pages 4557 – 4564 Vol.5, april-1 may 2004.

[7] W. Bergmann Tiest and A. Kappers. Cues for haptic perception of
compliance. Haptics, IEEE Transactions on, 2(4):189 –199, oct.-dec.
2009.

[8] L. Bizo, J. Chu, F. Sanabria, and P. Killeen. The failure of weber’s law in
time perception and production.Behavioural Processes, 71(2):201–210,
2006.

[9] S. Chaudhuri and A. N. Rajagopalan.Depth from defocus - a real
aperture imaging approach. Springer, 1999.

[10] S. Clarke, G. Schillhuber, M. Zaeh, and H. Ulbrich. Telepresence across
delayed networks: a combined prediction and compression approach. In
Haptic Audio Visual Environments and their Applications, 2006. HAVE
2006. IEEE International Workshop on, pages 171 –175, nov. 2006.

[11] O. Dabeer and S. Chaudhuri. Analysis of an adaptive sampler based
on weber’s law.Signal Processing, IEEE Transactions on, 59(4):1868
–1878, april 2011.

[12] E. A. M. Gamble. The applicability of weber’s law to smell. The
American Journal of Psychology, 10(1):pp. 82–142, 1898.

[13] V. Hayward. Is there a plenhaptic function?Philosophical Transactions
of the Royal Society B: Biological Sciences, 366(1581):3115–3122,
2011.

[14] M. H.Brill. Weber’s law and perceptual categories: Another teleological
view. Bulletin of Mathematical Biology, 45(1):139–142, 1983.

[15] P. Hinterseer, S. Hirche, S. Chaudhuri, E. Steinbach, and M. Buss.
Perception-based data reduction and transmission of haptic data in telep-
resence and teleaction systems.Signal Processing, IEEE Transactions
on, 56(2):588 –597, feb. 2008.

[16] P. Hinterseer and E. Steinbach. A psychophysically motivated com-
pression approach for 3d haptic data. InHaptic Interfaces for Virtual
Environment and Teleoperator Systems, 2006 14th Symposiumon, pages
35 – 41, march 2006.

[17] P. Hinterseer, E. Steinbach, S. Hirche, and M. Buss. A novel, psy-
chophysically motivated transmission approach for hapticdata streams
in telepresence and teleaction systems. InAcoustics, Speech, and
Signal Processing, 2005. Proceedings. (ICASSP ’05). IEEE International
Conference on, volume 2, pages ii/1097 – ii/1100 Vol. 2, march 2005.

[18] R. Hinterseer, E. Steinbach, and S. Chaudhuri. Perception-based com-
pression of haptic data streams using kalman filters. InAcoustics, Speech
and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006IEEE
International Conference on, volume 5, page V, may 2006.

[19] S. Hirche, A. Bauer, and M. Buss. Transparency of haptictelepresence
systems with constant time delay. InControl Applications, 2005. CCA
2005. Proceedings of 2005 IEEE Conference on, pages 328 –333, aug.
2005.

[20] S. Hirche, P. Hinterseer, E. G. Steinbach, and M. Buss. Transparent
data reduction in networked telepresence and teleaction systems. part i:
Communication without time delay.Presence, 16(5):523–531, 2007.

[21] P. Kadlecek. Overview of current developments in haptic apis.Proceed-
ings of CESCG, 2011.

[22] R. Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. InIJCAI, pages 1137–1145, 1995.

[23] A. Kron, G. Schmidt, B. Petzold, M. Zah, P. Hinterseer, and E. Stein-
bach. Disposal of explosive ordnances by use of a bimanual haptic
telepresence system. InRobotics and Automation, 2004. Proceedings.
ICRA ’04. 2004 IEEE International Conference on, volume 2, pages
1968 – 1973 Vol.2, 26-may 1, 2004.

[24] R. Luce and P. Suppes. Representational measurement theory. Stevens’
Handbook of Experimental Psychology, 2002.

[25] N. Sakr, J. Zhou, N. Georganas, and J. Zhao. Prediction-based haptic
data reduction and transmission in telementoring systems.Instrumenta-
tion and Measurement, IEEE Transactions on, 58(5):1727 –1736, may
2009.

[26] N. Sakr, J. Zhou, N. Georganas, J. Zhao, and E. Petriu. Robust
perception-based data reduction and transmission in telehaptic systems.
In EuroHaptics conference, 2009 and Symposium on Haptic Interfaces
for Virtual Environment and Teleoperator Systems. World Haptics 2009.
Third Joint, pages 214 –219, march 2009.

[27] C. Shahabi, A. Ortega, and M. Kolahdouzan. A comparisonof different
haptic compression techniques. InIEEE International Conference on
Multimedia and Expo, volume 1, pages 657 – 660 vol.1, 2002.

[28] A. Silva, O. Ramirez, V. Vega, and J. Oliver. Phantom omni haptic
device: Kinematic and manipulability. InElectronics, Robotics and
Automotive Mechanics Conference, 2009. CERMA ’09., pages 193 –198,
sept. 2009.

[29] E. Steinbach, S. Hirche, J. Kammerl, I. Vittorias, and R. Chaudhari.
Haptic data compression and communication.Signal Processing Mag-
azine, IEEE, 28(1):87 –96, jan. 2011.

[30] W. Stiles. Mechanisms of Colour Vision. Academic Press, London,
1978.

[31] H. Tanaka and K. Ohnishi. Lossy data compression using fdct for
haptic communication. InAdvanced Motion Control, 2010 11th IEEE
International Workshop on, pages 756 –761, march 2010.

[32] I. Vittorias, J. Kammerl, S. Hirche, and E. Steinbach. Perceptual coding
of haptic data in time-delayed teleoperation. InEuroHaptics conference,
2009 and Symposium on Haptic Interfaces for Virtual Environment and
Teleoperator Systems. World Haptics 2009. Third Joint, pages 208 –213,
march 2009.

[33] J. young Lee and S. Payandeh. Performance evaluation ofhaptic
data compression methods in teleoperation systems. InWorld Haptics
Conference (WHC), 2011 IEEE, pages 137 –142, june 2011.


