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Abstract—We consider the delay associated with transmissions
of random linear combinations (RLC) of a block of packets,
each held at a collection of independent transmitters and sent
over an erasure and collision multiple access channel to a
receiver. Our figure of merit is the expected time until the
receiver recovers the block of packets. The transmitters make
transmission decisions independently in space and time, and these
contention probabilities are the design variable in the problem.
The erasure collision channel consists of independent and identi-
cally distributed erasure channels between each transmitter and
the receiver, with the property that multiple messages arriving at
the receiver collide. We study the block delay under both RLC
and for the case where each active transmitter selects a packet
uniformly at random. Our main result identifies the contention
probability vector on the erasure collision channel that maximizes
the probability of message reception at the receiver in a time slot,
and thus minimizes the expected block delay per packet.

Index Terms—random linear combinations/coding; block de-
lay; random access; collision channel; erasure channel.

I. INTRODUCTION

The primary focus of this paper is to study the impact of
network coding on the delay incurred when multiple transmit-
ters contend for a wireless channel in a random-access manner
to send packets over an erasure channel, and multiple packets
arriving at a receiver collide, resulting in packet loss. Network
coding takes the form of random linear combinations (RLC)
of the source packets held at each transmitter, and is compared
against a scheme where each contending transmitter randomly
selects a packet (RSP) in each time slot. Delay is measured
as the time until the receiver recovers the packet block.

Multiple packets are required for there to be a block delay
improvement of RLC over RSP since, as is well-understood,
this improvement arises from the fewer redundant receptions
of RLC compared with RSP. Our prior work [1] (and others)
has studied the delay in the related problem consisting of
a single transmitter and multiple receivers, whereas in this
work we consider the scenario of multiple transmitters and a
single receiver. Although modeling cooperative transmitters is
of natural interest, in this work we suppose the transmitters
to be operating independently (but nonetheless are assumed to
hold in common the packets to be sent to the receivers). Non-
cooperative transmissions of shared information to a common
receiver arises in settings where the transmitters are unwilling
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Fig. 1: The system model: m transmitters, each holding
a common block of c packets, make transmission attempt
decisions in each time slot (denoted by the independent RVs
A = (A1, . . . , Am), with Ai ∼ Ber(αi)), and send messages
over an erasure collision channel (with IID erasure RVs
E = (Ei ∼ Ber(q), i ∈ [m]) from transmitter i), to a
receiver desiring the block of packets. Transmitters use either
random linear combinations (RLC) of the packets or randomly
selected packets (RSP) for transmission in each slot. Reception
is indicated by the RV R, where multiple packet arrivals
at the receiver result in a collision, and thus no reception.
Transmissions end as soon as the receiver recovers the block.

or unable to cooperate with one another (e.g., when owned by
separate carriers) but the information comes from a common
source (e.g., multicast from the source to the transmitters).

There are two key aspects of real-world wireless channels
we wish to capture in our model: erasures and collisions.
The erasure aspect captures the inherent uncertainty and
unreliability of a wireless channel, while the collision aspect
captures the inability of the receiver to obtain information from
simultaneous transmissions. The combined erasure collision
channel provides an interesting tension in selecting the con-
tention probabilities for the transmitters: erasures encourage
more frequent transmission to avoid packet loss in the channel,
while collisions encourage less frequent transmission to avoid
packet loss at the receiver. We optimize this tradeoff in Thm. 1.

A. Related work

Refer to [1] for references on delay performance of net-
work coding (in particular [4][5][8][9] therein). The general
problem of computation over multiple access channels has
been studied from an information theoretic perspective [2]. So
called network-coded multiple access (NCMA) [3] [4] exhibits
throughput gains by applying physical layer network coding
(PNC) and multiuser detection (MUD) to wireless multiple-
access. For additional references on applying PNC in a random



access setting, see e.g., [5] [6]. It should be noted much work
on random access is about collision resolution. In [7], which
builds upon ZigZag decoding (see [4] therein), collisions are
viewed as linear combinations of the original packets and
improvements of delay performance have been shown. Finally,
the paradigm of coded random access [8] is based on the idea
of successive cancellation and leverages the tool of codes on
graphs: thus the design space of random access protocols has
been expanded and performance improvements shown.

B. Contributions

Our contribution is to optimize the expected block delay in
the context of the multi-transmitter to receiver erasure collision
channel, using both random linear combinations and randomly
selected packets. Our main result, Thm. 1, gives the optimal
contention probability vector for maximizing the probability
of successful reception at the receiver, which is a tractable but
nontrivial nonlinear optimization problem.

II. MODEL

The model is illustrated in Fig. 1. Define [k] ≡ {1, . . . , k}
for k ∈ N. ei denotes a unit vector with 1 in position i.
RV and IID stand for “random variable” and “independent &
identically distributed” respectively.

We consider a slotted-time erasure collision channel serving
m transmitters (e.g., base stations) and a receiver (e.g., a
mobile user). There is a block of c identically sized packets,
labeled [c], and we suppose each transmitter is able to transmit
exactly one packet, or one linear combination of packets, in
each time slot. Each of the m transmitters holds all c packets,
and the receiver wants all c packets.

Delay. The RV T denotes the block delay: the number of
time slots until the receiver holds all c packets, or (equivalently
for our model) holds c (linearly independent) RLCs.

Erasure channel. The channel is a slotted-time erasure
collision channel with q ∈ (0, 1) the nonerasure probability
from each transmitter i to the receiver. In each time slot t
there is an independent (in both time and space) realization
of an erasure process, captured by an m vector of Bernoulli
(denoted by Ber) RVs E = (E1, . . . , Em) where Ei ∼ Ber(q),
and Ei = 1 (0) represents a nonerasure (erasure) respectively.

Random access transmissions. The transmitters employ
random access in that in each time slot each of the m trans-
mitters makes an independent random decision Ai ∼ Ber(αi)
of whether or not to transmit (contend), with αi ∈ [0, 1]
the contention probability. Observe the contention decision
RVs A = (A1, . . . , Am) are independent in time and space,
but not identically distributed. The contention probabilities
α ≡ (αi, i ∈ [m]) is the control in the system to be designed.

Collision receptions. The transmission decisions A and
erasure pattern E in a time slot determine which transmissions,
if any, reach the receiver. The collision aspect of the channel
asserts successful receptions occur when exactly one message
is received at the receiver, and these successes are denoted by
the reception RV R. Note that multiple transmissions imply

neither collision nor successful reception, since any or all
transmissions may be erased.

RLC vs. RSP. The transmission paragraph above clarified
when transmitters contend, but not which packets are sent. We
consider two different packet selection models, named RLC,
e.g., network coding, and RSP. Under RLC, each transmitter
that elects to contend selects c coefficients uniformly at ran-
dom from a large1 field and uses these to form a random linear
combination of the c packets, which it then transmits. Under
RSP, each transmitter that elects to contend selects one packet
from the available block of c packets uniformly at random,
each with probability 1/c. The key questions of interest in this
paper are i) how to select the contention probabilities α as a
function of (c,m, q) for both RLC and RSP, and ii) how the
optimized RLC and RSP delays differ and scale in (c,m, q).

Feedback. Each transmitter repeatedly contends as dis-
cussed above until the receiver recovers the block, i.e., either
receives c (linearly independent) RLCs, or receives each of the
c packets under RSP. When the receiver recovers the block it
immediately notifies the transmitters of this fact with a single
broadcast bit. Aside from this, we assume the receiver does not
otherwise respond with instantaneous feedback. We assume
this in order to minimize the required feedback bandwidth2.

III. BLOCK DELAY ANALYSIS UNDER RLC AND RSP

We derive expressions for the expected block delay under
RLC in §III-A and under RSP in §III-B, then characterize the
optimal contention probabilities in §III-C.

A. Delay under RLC

As we assume the field size is sufficiently large so that
the possibility of dependent combinations may be ignored,
it follows that the relevant state of the receiver under RLC
is simply the number of successfully received combinations.
The state space is X = {0, . . . , c}, with transient states
T = {0, . . . , c− 1} and absorbing (final) state A = {c}. The
state advances from x to x+1 in each time slot in which there
is a reception. As the probability of reception is independent
of the state and therefore constant in time, it follows that the
random block delay TRLC is a negative binomial RV, counting
the number of time slots required to acquire c successes where
each attempt is successful with some (to be determined) recep-
tion probability f ∈ (0, 1), i.e., TRLC ∼ NegBin(c, f), with
P(TRLC = n) =

(
n−1
c−1
)
(1 − f)n−cf c for n ∈ {c, c + 1, . . .},

and expected block delay per packet E[TRLC]
c = 1

f . The RLC
expected block delay per packet, E[TRLC]/c, is minimized
by maximizing the reception probability f = f(α). The
following result gives the reception probability.

1The field size is assumed to be suitably large to justify ignoring the
possibility of i) selecting the all zero vector and ii) two random linear
combinations being not linearly independent. Analysis of these phenomena
is possible, but is omitted here.

2Consider instead a RSP model where the receiver broadcasts the packet
index it successfully received that slot, if any. In this case each transmitter
would know the state of the receiver, and it is natural to then adapt
the contention probability and packet selection to this state via dynamic
programming. Although interesting, this is outside the scope of this paper.



Proposition 1. The RLC message reception probability is, with
p = (pi, i ∈ [m]) and pi = αiq, given by:

f(p) = E[R] = P(R = 1) =
∑
i∈[m]

pi
∏
j 6=i

(1− pj). (1)

Proof: In a given time slot suppose A = (Ai, i ∈ [m])
are the random transmission attempt decisions, with A in-
dependent and Ai ∼ Ber(αi), and let E = (Ei, i ∈ [m])
be the IID erasure realizations, with Ei ∼ Ber(q). Form the
independent RVs S = (Si, i ∈ [m]) with Si = AiEi indicating
reception from transmitter i. Clearly, Si ∼ Ber(pi), with
pi = αiq ∈ [0, q] and p = (pi, i ∈ [m]). Observe S1+· · ·+Sm
is the random number of packets arriving at the receiver, and
as such the collision channel model requires the indicator RV
of a successful reception equal R = 1{S1 + · · · + Sm = 1}.
The probability of a successful reception is therefore (1).

B. Randomly selected packet (RSP)

As the packet selection process is uniformly random, it
follows that the probability of the receiver obtaining a new
packet in a time slot depends upon the set of currently obtained
packets only through the number of such packets. As such,
the state space is again X = {0, . . . , c}, with absorbing state
A = {c} and transient states T = {0, . . . , c − 1}, with
state transitions from x to x + 1 in each time slot in which
the receiver obtains a new packet (unlike the case of RLC,
where the state advances for any reception). As the transition
probability is now state dependent, it follows that the random
block delay TRSP may be expressed as TRSP = T1 + · · ·+Tc,
where Tk ∼ Geo(fk) is a geometric RV with parameter
fk (defined below) representing the number of time slots
between the reception of new packet k − 1 and new packet
k. Note the (T1, . . . , Tc) are independent by the governing
model assumptions. It follows that E[TRSP] =

∑c
k=1 f

−1
k .

The success probability is given in the following result.

Proposition 2. Having received k − 1 of the c packets, the
probability of receiving a new message under RSP is, with
p = (pi, i ∈ [m]) and pi = αiq, given by (with f(p) in (1)):

fk = f(p)

(
1− k − 1

c

)
, k ∈ [c]. (2)

Proof: Suppose the receiver holds k− 1 of the c packets.
The probability fk of a new reception in a time slot is (2)
since i) f(p) is the probability of receiving a (single) packet,
and ii) 1− (k− 1)/c is the probability the received packet is
new, i.e., not one of the k − 1 packets already held.

Therefore the RSP expected block delay per packet is

E[TRSP]

c
=

1

c

c∑
k=1

f−1k =
1

cf(p)

c∑
k=1

(
1− k − 1

c

)−1
=
H(c)

f(p)
.

(3)
Here, H(c) ≡ ∑c

k=1
1
k is the cth harmonic number, with

H(c) ≈ log c + γ, for γ ≈ 0.577 the Euler-Mascheroni
constant. In particular, (3) ensures the expected RSP block
delay per packet is minimized by maximizing the reception

probability f(p). Furthermore, for any choice of p, the ratio
of the expected delays per packet of RSP over RLC equals

E[TRSP]/c

E[TRLC]/c
= H(c). (4)

That is, the performance ratio i) is independent of the choice
of α and in fact independent of the number of transmitters m,
and ii) grows logarithmically in the blocklength c.

C. Optimal contention for maximum reception probability

The main result of the paper, Thm. 1, gives the optimal
contention vector α∗ ∈ [0, 1]m to maximize the probability of
a successful reception over the erasure collision channel.

Consider maximizing f(p) for q ∈ (0, 1) and m ∈ N:

max f(p) s.t. 0 ≤ p ≤ q1. (5)

The following theorem, the proof of which is given in the
Appendix, characterizes p∗, and by extension, the optimal
contention probabilities α∗ (with α∗i = p∗i /q for i ∈ [m]).

Theorem 1. The solution to (5) is (up to permutation):
1) p∗ = q1, when q ∈ (0, 1/m];
2) p∗ =

∑t
i=1 qei, when q ∈ (1/(t+ 1), 1/t) for t ∈ [m];

3) p∗ =
∑t−1
i=1 qei+pset, for any ps ∈ [0, q], when q = 1/t

for t ∈ {2, . . . ,m}.
Here t = t∗(q) may be interpreted as the optimal number of
contending/active transmitters.

Several points bear mention:
1) The cases are not fully disjoint (e.g, when t = m); in some

cases the solution is not unique.
2) The objective function f(p) is the throughput of an

equivalent (erasure-free) collision channel under the finite-
user slotted Aloha protocol, with contention probabilities
(pi ≡ αiq, i ∈ [m]). The key difference of (5) is the
restriction of the contention probability pi to [0, q], instead
of the usual domain of [0, 1].

3) As will be seen in the proof, this restriction of the domain
makes this optimization non-trivial. Further, our current
techniques seems to also critically hinge on the assumption
of homogeneous erasure probabilities q = q1.

4) The solution shows the impact of the nonerasure parameter
q on the optimal contention probability. For q small (≤
1/m) the risk of erasures outweighs that of collision, and
as such it is optimal for all transmitters to contend. For q
large (≥ 1/2) the reverse is true, and it is optimal for a
single transmitter to contend. The t∗(q) falls from m to 1
in a piecewise constant manner for q ∈ [1/m, 1/2].

5) The solution demonstrates that, regardless of q, each
contention probability obeys α∗i ∈ {0, 1}, meaning each
transmitter either always or never transmits.

IV. CONCLUSION

We presented the optimization problem of minimizing the
expected block delay per packet over the erasure collision
channel, using both RLC and RSP transmissions. Our main
result (Thm. 1) is an explicit characterization of the optimal



contention probability vectors α to maximize the reception
probability, and thereby minimize both block delays. Future
work will consider: i) transmitter-specific erasure probabilities
and ii) n receivers, and select the contention probabilities to
optimize the anycast and broadcast block delays.
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APPENDIX A
PROOF OF THM. 1.

The following inequalities hold (both tight only at z = 0):
z

1 + z
≤ log(1 + z) ≤ z, ∀z > −1. (6)

The following lemma will be used in the proof of Thm. 1.

Lemma 1. For t ∈ N and q ∈
(

1
t+1 ,

1
t

)
it holds that g(t; q) ≡

tq(1− q)t− 1
q − 1 > 0.

Proof: First, let t ≥ 2. View g(t; q) as a function of t,
parameterized by q, and defined on t ∈ (1/q − 1, 1/q), with

d2g

dt2
= q(1− q)t− 1

q log(1− q)(2 + t log(1− q)). (7)

Applying (6):

2 + t log(1− q) ≥ 2 + t
−q

1− q > 2− 1

1− q > 0, (8)

where the second inequality follows from t < 1/q, and the
last inequality holds if q < 1/2 (which is true as q ∈ (1/(t+

1), 1/t) and t ≥ 2). This implies d2

dt2 g(t; q) < 0 meaning
g(t; q) is strictly concave in t ∈ (1/q − 1, 1/q). Thus the
infimum of g(t; q) occurs at its extreme point(s). Since g(1/q−
1; q) = 0 = g(1/q; q), it follows that g(t; q) > 0 for t ∈ (1/q−
1, 1/q). Second, let t = 1. We wish to show g(1; q) ≡ q(1−
q)1−

1
q − 1 > 0 for q ∈ (1/2, 1). The first derivative of g(1; q)

is 1
q (1−q)1− 1

q (2q+log(1−q)). We can verify 2q+log(1−q) is
decreasing in q and has a single root on q ∈ (1/2, 1). Therefore
on (1/2, 1), g(1; q) is first increasing and then decreasing, with
infimum g(1; 1/2) = 0 = limq→1 g(1; q), implying g(1; q) is
strictly positive for q ∈ (1/2, 1).

Proof of Thm. 1: We will prove case 1 first. Cases 2 and
3 will then be proved together. Define the following notation

xi = xi(p) ≡ pi
∏
j 6=i

(1− pj), f = f(p) ≡
m∑
i=1

xi

π = π(p) ≡
∏
j

(1− pj), πi = πi(p) ≡ π

1− pi
. (9)

Algebra yields the following partial derivatives:

∂xj(p)

∂pi
=

{
π

1−pj , i = j

− πpj
(1−pi)(1−pj) , i 6= j

,
∂f(p)

∂pi
=
πi − f
1− pi

.

(10)
Case 1: q ∈ (0, 1/m]. From (10):

∂f(p)

∂pi
= πi

1−
∑
j 6=i

pj
1− pj

 .

This shows ∂f
∂pi
≥ 0 iff

∑
j 6=i

pj
1−pj ≤ 1, which is equivalent

to
∑
j 6=i

1
1−pj ≤ m. As each pi ∈ [0, q], we have 1

1−pi ≤
1

1−q ,
and thus it follows that∑

j 6=i

1

1− pj
≤
∑
j 6=i

1

1− q =
m− 1

1− q ≤ m, (11)

where the last inequality follows from q ∈ (0, 1/m]. This
means when q ∈ (0, 1/m], all the partial derivatives ∂f

∂pi
are

nonnegative, and thus the maximizer in this case is p∗ = q1.
Cases 2 and 3: q ∈ ⋃mt=1(1/(t + 1), 1/t] ∩ (0, 1). The

Lagrangian is:

L(p,λ,ν) = f(p) +

m∑
i=1

λi (−pi) +

m∑
i=1

νi (pi − q) , (12)

with Lagrange multipliers λ = (λi, i ∈ [m]) for −p ≤ 0,
and ν = (νi, i ∈ [m]) for p − q1 ≤ 0. The first-order
Karush-Kuhn-Tucker (KKT) necessary conditions for a local
maximizer are, for each i ∈ [m]: i) stationarity, ∂L

∂pi
= 0;

ii) primal feasibility, −pi ≤ 0 and pi − q ≤ 0; iii) dual
feasibility, λi ≤ 0 and νi ≤ 0; and iv) complementary
slackness, λi(−pi) = 0 and νi(pi − q) = 0. Applying (10):

∂f

∂pi
− λi + νi =

πi − f
1− pi

− λi + νi = 0. (13)

Applying complementary slackness to the above expression
allows us to conclude that if a maximizer p has any nonzero
component(s) strictly less than q, then all these nonzero com-
ponents must equal each other. This follows from observing
πi = πj iff pi = pj for 0 ≤ p ≤ q1 with q ∈ (0, 1). This
motivates us to partition the feasible set [0, q]m according to
whether a point p has any nonzero value strictly less than q
among all its m components (pi, i ∈ [m]). In the following, we
will find the best candidate(s) from each of the two categories
and then choose the best between them.

First, consider the case when p does not have any nonzero
value strictly less than q. These points may also be called
“quasi-uniform” (QU) points. Let m′ (≤ m) be the total
number of indices taking the unique nonzero value q. Such



a point p can be expressed as p =
∑m′

j=1 qej , and the
corresponding objective function f(p) = q

1−qh(m′; q) where
the function h(m′; q) ≡ m′(1 − q)m

′
. We can verify the

logarithm of h is concave, and its unique stationary point
(maximizer) is m̄′ = 1/φ(q) where φ(q) ≡ − log(1 − q).
We can verify (applying (6))

1

q
− 1 <

1

φ(q)
<

1

q
, ∀q ∈ (0, 1). (14)

Note that for q ∈ (1/(t+ 1), 1/t], we have

t− 1 ≤ 1

q
− 1 < m̄′ <

1

q
< t+ 1, (15)

from which we can see that the maximizer m′∗ (as it has to
be an integer) of f comes from {t− 1, t, t+ 1}. Toward this,
we evaluate h at these points and find

h(m′; q)|m′=t−1 ≤ h(m′; q)|m′=t > h(m′; q)|m′=t+1 , (16)

where the left inequality holds with equality when q = 1/t but
is strict when q ∈ (1/(t+1), 1/t). Therefore the maximizer in
this category, when q ∈ (1/(t+ 1), 1/t], is m′∗ = t (together
with m′∗ = t−1 if q = 1/t for t ≥ 2), and the corresponding
objective function is

f |m′∗=t =
q

1− q h(m′; q)

∣∣∣∣
m′∗=t

= tq(1− q)t−1. (17)

Second, consider the case when p has some nonzero value
strictly less than q. Recall there can be only one3 such distinct
nonzero value. As such, we parameterize the points in this
category as p(ps, k,m

′) where ps (s for “small”, not an index)
denotes this common nonzero value, k is the number of indices
taking ps, and m′ represents the total number of indices taking
nonzero values. Naturally, ps ∈ (0, q), k ∈ {1, . . . ,m′} (when
k = m′ it means it does not have any nonzero component
value q), and k ≤ m′ ∈ {1, . . . ,m}.

Under the p(ps, k,m
′) parameterization, f(p(ps, k,m

′)) =

π(p(ps, k,m
′))

(
ps

1− ps
k +

q

1− q (m′ − k)

)
. (18)

Combining (13) (applied to ps, with complementary slackness:
λs=νs=0) and (18) gives:

m′ =
k(q − ps) + 1− q

(1− ps)q
. (19)

As such, the objective f(p) may be equivalently expressed as

f(p(ps, k,m
′)) = (1− q)m′−1

(
1− ps
1− q

)k−1
. (20)

Note (ps, k,m
′) are mutually constrained as in (19). Here

we enlarge the feasible set so that the domain of (ps, k,m
′)

is [0, q]× [1,m′]× [1,∞). In particular, although (19) still has
to hold, m′ need not be an integer, nor does k. Consequently,
the best candidate from this enlarged feasible set will yield an

3This is the number of distinct values in the nonzero components of p (not
across different p’s, and not the number of indices taking nonzero values).

upper bound of the maximum that are actually attainable by
some point(s) in this category.

Viewing m′ as an exogenous parameter, and substituting
(19) into (20), the partial derivatives of the bivariate function
f = f(ps, k) w.r.t. k and ps may be computed as

∂f

∂k
=

(1− q)
k(q−ps)+1−q

q(1−ps)

(
1−ps
1−q

)k
q(1− ps)2

gk(ps; q),

∂f

∂ps
=

(k − 1)(1− q)
k(q−ps)+1−q

q(1−ps)

(
1−ps
1−q

)k
q(1− ps)3

gps(ps; q), (21)

where

gk(ps; q) ≡ (q − ps) log(1− q) + q(1− ps) log

(
1− ps
1− q

)
,

gps(ps; q) ≡ (ps − 1)q + (q − 1) log(1− q). (22)

We can verify d2gk
dp2s

= q
1−ps > 0, meaning the function gk is

convex in ps ∈ [0, q] and hence it attains the maximum value
at its boundary (extreme) point(s). We then check gk(0; q) =
0 = gk(q; q). This says gk ≤ 0 and hence ∂f

∂k ≤ 0. Regarding
the sign of ∂f

∂ps
, note when k = 1, ∂f

∂ps
= 0 for all ps ∈ [0, q];

when k > 1, the sign is the same as that of gps . Since gps is
linearly increasing in ps and we can verify (using (6) to show
gps(0; q) < 0 < gps(q; q)), via the intermediate value theorem,
that there exists a unique root p̄s ∈ (0, q) of gps = 0, it follows
that ∂f

∂ps
< 0 (> 0) when ps < p̄s (> p̄s). This says for any

given k, the maximum of f(ps, k) is attained at either ps = 0
or q (or both). We can compute that f(0, k) = f(q, k). Recall
for any fixed ps, f is decreasing in k, these together mean the
maximum of f is attained when k is further set to 1. In fact
we can verify the maximum is given by

f(ps, 1) = (1− q) 1
q−1, ∀ps ∈ [0, q], (23)

and occurs (over the enlarged feasible set) when m′ = 1/q.
To summarize (thus far): when q ∈ (1/(t+1), 1/t] the best

maximizer(s) from the first category (QU points) yields ((17))
the objective function tq(1 − q)t−1, and the candidates from
the other category (points with nonzero component(s) strictly
less than q) have the objective function upper bounded by
((23)) (1 − q) 1

q−1. For the latter, note when q = 1/t for t ∈
{2, . . . ,m}, this upper bound is tight and the optimal (from
(19)) m′∗ = 1/q = t meaning the maximizer in this case is∑t−1
i=1 qei + pset for all ps ∈ (0, q).
Finally, the global maximizer will be found if we can order

the maxima from the two categories. Toward this, we’ll show

tq(1− q)t−1 ≥ (1− q) 1
q−1,∀q ∈ (1/(t+ 1), 1/t], t ∈ [m],

(24)
and it is tight when q = 1/t for t ∈ {2, . . . ,m}.

When q = 1/t, that (24) holds with equality can be verified
easily and the maximizers (from the two categories) can be
written in a unified manner, namely p∗ =

∑t−1
i=1 qei + pset.

When q lies in (1/(t + 1), 1/t), (24) follows from Lem. 1.
This means the maximizer from the QU category is strictly
superior, and hence the global maximizer in this case is given
by p∗ =

∑t
i=1 qei.


